Robson Matthew J, Xu Shengjun, Wang Zilong, Chen Qing, Ciucci Francesco
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China.
University of Bayreuth, Chair of Electrode Design for Electrochemical Energy Systems, 95448, Bayreuth, Germany.
Adv Mater. 2025 Aug;37(32):e2502649. doi: 10.1002/adma.202502649. Epub 2025 May 22.
Aqueous deep eutectic electrolytes (DEEs) offer great potential for low-cost zinc-ion batteries but often have limited performance. Discovering new electrolytes is therefore crucial, yet time-consuming and resource-intensive. In response, this work presents a Large Language Model (LLM)-based multi-agent network that proposes DEE compositions for zinc-ion batteries. By analyzing academic papers from the DEE field, the network identifies innovative, inexpensive, and sustainable Lewis bases to pair with Zn(BF)·xHO. A Zn(BF)·xHO-ethylene carbonate (EC) system demonstrates high conductivity (10.6 mS cm) and a wide electrochemical stability window (2.37 V). The optimized electrolyte enables stable zinc stripping/plating, achieves outstanding rate performance (81 mAh g at 5 A g), and supports 4000 cycles in Zn||polyaniline cells at 3 A g. Spectroscopic analyses and simulations reveal that EC coordinates to Zn mitigating water-induced corrosion, while a fluorine-rich hybrid organic/inorganic solid electrolyte interphase enhances stability. This work showcases a pioneering LLM-driven approach to electrolyte development, establishing a new paradigm in materials research.
水系深共晶电解质(DEEs)在低成本锌离子电池方面具有巨大潜力,但性能往往有限。因此,发现新型电解质至关重要,但这既耗时又耗费资源。作为回应,这项工作提出了一种基于大语言模型(LLM)的多智能体网络,用于为锌离子电池提出DEE成分。通过分析DEE领域的学术论文,该网络识别出与Zn(BF)·xHO配对的创新、廉价且可持续的路易斯碱。一种Zn(BF)·xHO - 碳酸亚乙酯(EC)体系表现出高电导率(10.6 mS cm)和宽电化学稳定窗口(2.37 V)。优化后的电解质能够实现稳定的锌剥离/镀覆,具有出色的倍率性能(在5 A g下为81 mAh g),并在3 A g下的Zn||聚苯胺电池中支持4000次循环。光谱分析和模拟表明,EC与Zn配位,减轻了水诱导的腐蚀,而富含氟的有机/无机混合固体电解质界面增强了稳定性。这项工作展示了一种由LLM驱动的开创性电解质开发方法,在材料研究中建立了新的范式。