Chen Xinyue, Dong Ximan, Zhang Chuyan, Zhu Meng, Ahmed Essraa, Krishnamurthy Giridharan, Rouzbahani Rozita, Pobedinskas Paulius, Gauquelin Nicolas, Jannis Daen, Kaur Kawaljit, Hafez Aly Mohamed Elsayed, Thiel Felix, Bornemann Rainer, Engelhard Carsten, Schönherr Holger, Verbeeck Johan, Haenen Ken, Jiang Xin, Yang Nianjun
Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany.
Institute for Materials Research (IMO), Institute for Materials Research in MicroElectronics (IMOMEC), IMEC vzw, Hasselt University, Diepenbeek, 3590, Belgium.
Small Methods. 2025 Feb;9(2):e2301774. doi: 10.1002/smtd.202301774. Epub 2024 Jun 14.
Diamond electrochemistry is primarily influenced by quantities of sp-carbon, surface terminations, and crystalline structure. In this work, a new dimension is introduced by investigating the effect of using substrate-interlayers for diamond growth. Boron and nitrogen co-doped nanocrystalline diamond (BNDD) films are grown on Si substrate without and with Ti and Ta as interlayers, named BNDD/Si, BNDD/Ti/Si, and BNDD/Ta/Ti/Si, respectively. After detailed characterization using microscopies, spectroscopies, electrochemical techniques, and density functional theory simulations, the relationship of composition, interfacial structure, charge transport, and electrochemical properties of the interface between diamond and metal is investigated. The BNDD/Ta/Ti/Si electrodes exhibit faster electron transfer processes than the other two diamond electrodes. The interlayer thus determines the intrinsic activity and reaction kinetics. The reduction in their barrier widths can be attributed to the formation of TaC, which facilitates carrier tunneling, and simultaneously increases the concentration of electrically active defects. As a case study, the BNDD/Ta/Ti/Si electrode is further employed to assemble a redox-electrolyte-based supercapacitor device with enhanced performance. In summary, the study not only sheds light on the intricate relationship between interlayer composition, charge transfer, and electrochemical performance but also demonstrates the potential of tailored interlayer design to unlock new capabilities in diamond-based electrochemical devices.
金刚石电化学主要受sp-碳的数量、表面终端和晶体结构的影响。在这项工作中,通过研究使用衬底中间层对金刚石生长的影响引入了一个新的维度。硼和氮共掺杂的纳米晶金刚石(BNDD)薄膜分别在没有中间层以及以钛和钽作为中间层的硅衬底上生长,分别命名为BNDD/Si、BNDD/Ti/Si和BNDD/Ta/Ti/Si。在使用显微镜、光谱学、电化学技术和密度泛函理论模拟进行详细表征之后,研究了金刚石与金属之间界面的组成、界面结构、电荷传输和电化学性质之间的关系。BNDD/Ta/Ti/Si电极表现出比其他两个金刚石电极更快的电子转移过程。因此,中间层决定了本征活性和反应动力学。它们势垒宽度的减小可归因于TaC的形成,这促进了载流子隧穿,同时增加了电活性缺陷的浓度。作为一个案例研究,BNDD/Ta/Ti/Si电极进一步用于组装具有增强性能的基于氧化还原电解质的超级电容器装置。总之,该研究不仅揭示了中间层组成、电荷转移和电化学性能之间的复杂关系,还展示了定制中间层设计在解锁基于金刚石的电化学装置新功能方面的潜力。