Suppr超能文献

全固态电池中分层阴极化学机械失效的原子起源

Atomic Origin of Chemomechanical Failure of Layered Cathodes in All-Solid-State Batteries.

作者信息

Wang Chunyang, Jing Yaqi, Zhu Dong, Xin Huolin L

机构信息

Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States.

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.

出版信息

J Am Chem Soc. 2024 Jul 3;146(26):17712-17718. doi: 10.1021/jacs.4c02198. Epub 2024 Jun 14.

Abstract

The ever-increasing demand for safety has thrust all-solid-state batteries (ASSBs) into the forefront of next-generation energy storage technologies. However, the atomic mechanisms underlying the failure of layered cathodes in ASSBs, as opposed to their counterparts in liquid electrolyte-based lithium-ion batteries (LIBs), have remained elusive. Here, leveraging artificial intelligence-enhanced super-resolution electron microscopy, we unravel the atomic origins dictating the chemomechanical degradation of technologically crucial high-Ni layered oxide cathodes in ASSBs. We reveal that the coupling of surface frustration and interlayer-shear-induced phase transformation exacerbates the chemomechanical breakdown of layered cathodes. Surface frustration, a phenomenon previously unobserved in liquid electrolyte-based LIBs, emerges through electrochemical processes involving surface nanocrystallization coupled with rock salt transformation. Simultaneously, delithiation-induced interlayer shear yields the formation of chunky O1 phases and intricate interfaces/transition motifs, distinct from scenarios observed in liquid electrolyte-based LIBs. Bridging the knowledge gap between the failure mechanisms of layered cathodes in solid-state electrolytes and conventional liquid electrolytes, our study provides unprecedented atomic-scale insights into the degradation pathways of layered cathodes in ASSBs.

摘要

对安全性的需求不断增加,使得全固态电池(ASSB)成为下一代储能技术的前沿领域。然而,与基于液体电解质的锂离子电池(LIB)相比,ASSB中分层阴极失效背后的原子机制仍然难以捉摸。在这里,利用人工智能增强的超分辨率电子显微镜,我们揭示了决定ASSB中技术关键的高镍分层氧化物阴极化学机械降解的原子起源。我们发现,表面失配和层间剪切诱导的相变耦合加剧了分层阴极的化学机械分解。表面失配是一种以前在基于液体电解质的LIB中未观察到的现象,它通过涉及表面纳米晶化与岩盐转变的电化学过程出现。同时,脱锂诱导的层间剪切产生了块状O1相和复杂的界面/过渡图案,这与在基于液体电解质的LIB中观察到的情况不同。我们的研究弥合了固态电解质和传统液体电解质中分层阴极失效机制之间的知识差距,为ASSB中分层阴极的降解途径提供了前所未有的原子尺度见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验