Muniz Nathália Oderich, Baudequin Timothée
Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, Compiègne Cedex, France.
Tissue Eng Part B Rev. 2025 Apr;31(2):174-189. doi: 10.1089/ten.TEB.2024.0079. Epub 2024 Jul 8.
The dura mater, the furthest and strongest layer of the meninges, is crucial for protecting the brain and spinal cord. Its biomechanical behavior is vital, as any alterations can compromise biological functions. In recent decades, interest in the dura mater has increased due to the need for hermetic closure of dural defects prompting the development of several substitutes. Collagen-based dural substitutes are common commercial options, but they lack the complex biological and structural elements of the native dura mater, impacting regeneration and potentially causing complications like wound/postoperative infection and cerebrospinal fluid (CSF) leakage. To face this issue, recent tissue engineering approaches focus on creating biomimetic dura mater substitutes. The objective of this review is to discuss whether mimicking the mechanical properties of native tissue or ensuring high biocompatibility and bioactivity is more critical in developing effective dural substitutes, or if both aspects should be systematically linked. After a brief description of the properties and architecture of the native cranial dura, we describe the advantages and limitations of biomimetic dura mater substitutes to better understand their relevance. In particular, we consider biomechanical properties' impact on dura repair's effectiveness. Finally, the obstacles and perspectives for developing the ideal dural substitute are explored.
硬脑膜是脑膜最外层且最坚韧的一层,对保护脑和脊髓至关重要。其生物力学行为至关重要,因为任何改变都可能损害生物学功能。近几十年来,由于需要对硬脑膜缺损进行密闭缝合,促使人们开发了几种替代品,因此对硬脑膜的关注度有所增加。基于胶原蛋白的硬脑膜替代品是常见的商业选择,但它们缺乏天然硬脑膜复杂的生物学和结构元素,影响再生,并可能导致伤口/术后感染和脑脊液漏等并发症。为解决这一问题,最近的组织工程方法专注于创建仿生硬脑膜替代品。本综述的目的是讨论在开发有效的硬脑膜替代品时,模仿天然组织的机械性能或确保高生物相容性和生物活性哪个更关键,或者这两个方面是否应系统地联系起来。在简要描述天然颅骨硬脑膜的特性和结构后,我们描述了仿生硬脑膜替代品的优点和局限性,以便更好地理解它们的相关性。特别是,我们考虑了生物力学性能对硬脑膜修复效果的影响。最后,探讨了开发理想硬脑膜替代品的障碍和前景。