Suppr超能文献

用于多源遥感数据分类的全局线索引导交叉记忆四元数Transformer网络

Global Clue-Guided Cross-Memory Quaternion Transformer Network for Multisource Remote Sensing Data Classification.

作者信息

Hu Wen-Shuai, Li Wei, Li Heng-Chao, Huang Feng-Hua, Tao Ran

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Apr;36(4):7357-7371. doi: 10.1109/TNNLS.2024.3406735. Epub 2025 Apr 4.

Abstract

Multisource remote sensing data classification is a challenging research topic, and how to address the inherent heterogeneity between multimodal data while exploring their complementarity is crucial. Existing deep learning models usually directly adopt feature-level fusion designs, most of which, however, fail to overcome the impact of heterogeneity, limiting their performance. As such, a multimodal joint classification framework, called global clue-guided cross-memory quaternion transformer network (GCCQTNet), is proposed for multisource data [i.e., hyperspectral image (HSI) and synthetic aperture radar (SAR)/light detection and ranging (LiDAR)] classification. First, a three-branch structure is built to extract the local and global features, where an independent squeeze-expansion-like fusion (ISEF) structure is designed to update the local and global representations by considering the global information as an agent, suppressing the negative impact of multimodal heterogeneity layer by layer. A cross-memory quaternion transformer (CMQT) structure is further constructed to model the complex inner relationships between the intramodality and intermodality features to capture more discriminative fusion features that fully characterize multimodal complementarity. Finally, a cross-modality comparative learning (CMCL) structure is developed to impose the consistency constraint on global information learning, which, in conjunction with a classification head, is used to guide the end-to-end training of GCCQTNet. Extensive experiments on three public multisource remote sensing datasets illustrate the superiority of our GCCQTNet with regards to other state-of-the-art methods.

摘要

多源遥感数据分类是一个具有挑战性的研究课题,如何在探索多模态数据互补性的同时解决其固有的异质性至关重要。现有的深度学习模型通常直接采用特征级融合设计,然而,其中大多数未能克服异质性的影响,限制了它们的性能。因此,本文提出了一种用于多源数据[即高光谱图像(HSI)和合成孔径雷达(SAR)/激光雷达(LiDAR)]分类的多模态联合分类框架,称为全局线索引导交叉记忆四元数变压器网络(GCCQTNet)。首先,构建一个三分支结构来提取局部和全局特征,其中设计了一种独立的类似挤压-扩展的融合(ISEF)结构,通过将全局信息作为媒介来更新局部和全局表示,逐层抑制多模态异质性的负面影响。进一步构建了一个交叉记忆四元数变压器(CMQT)结构,以对模态内和模态间特征之间的复杂内部关系进行建模,从而捕获更具判别力的融合特征,充分表征多模态互补性。最后,开发了一种跨模态对比学习(CMCL)结构,对全局信息学习施加一致性约束,该结构与分类头一起用于指导GCCQTNet的端到端训练。在三个公共多源遥感数据集上进行的大量实验表明,我们的GCCQTNet相对于其他现有最先进方法具有优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验