Suppr超能文献

一种CLNN:用于多源遥感数据分类的空间、光谱和多尺度注意力卷积长短期记忆神经网络

A CLNN: Spatial, Spectral and Multiscale Attention ConvLSTM Neural Network for Multisource Remote Sensing Data Classification.

作者信息

Li Heng-Chao, Hu Wen-Shuai, Li Wei, Li Jun, Du Qian, Plaza Antonio

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Feb;33(2):747-761. doi: 10.1109/TNNLS.2020.3028945. Epub 2022 Feb 3.

Abstract

The problem of effectively exploiting the information multiple data sources has become a relevant but challenging research topic in remote sensing. In this article, we propose a new approach to exploit the complementarity of two data sources: hyperspectral images (HSIs) and light detection and ranging (LiDAR) data. Specifically, we develop a new dual-channel spatial, spectral and multiscale attention convolutional long short-term memory neural network (called dual-channel A CLNN) for feature extraction and classification of multisource remote sensing data. Spatial, spectral, and multiscale attention mechanisms are first designed for HSI and LiDAR data in order to learn spectral- and spatial-enhanced feature representations and to represent multiscale information for different classes. In the designed fusion network, a novel composite attention learning mechanism (combined with a three-level fusion strategy) is used to fully integrate the features in these two data sources. Finally, inspired by the idea of transfer learning, a novel stepwise training strategy is designed to yield a final classification result. Our experimental results, conducted on several multisource remote sensing data sets, demonstrate that the newly proposed dual-channel A CLNN exhibits better feature representation ability (leading to more competitive classification performance) than other state-of-the-art methods.

摘要

有效利用多数据源信息的问题已成为遥感领域一个相关但具有挑战性的研究课题。在本文中,我们提出了一种利用两种数据源互补性的新方法:高光谱图像(HSIs)和光探测与测距(LiDAR)数据。具体而言,我们开发了一种新的双通道空间、光谱和多尺度注意力卷积长短期记忆神经网络(称为双通道A CLNN),用于多源遥感数据的特征提取和分类。首先针对HSI和LiDAR数据设计了空间、光谱和多尺度注意力机制,以便学习光谱和空间增强的特征表示,并为不同类别表示多尺度信息。在所设计的融合网络中,使用了一种新颖的复合注意力学习机制(结合三级融合策略)来充分整合这两种数据源中的特征。最后,受迁移学习思想的启发,设计了一种新颖的逐步训练策略以产生最终分类结果。我们在多个多源遥感数据集上进行的实验结果表明,新提出的双通道A CLNN比其他现有方法表现出更好的特征表示能力(从而带来更具竞争力的分类性能)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验