Silvestri Raffaele, Yu Haocun, Strömberg Teodor, Hilweg Christopher, Peterson Robert W, Walther Philip
University of Vienna, Faculty of Physics, Vienna Center for Quantum Science and Technology (VCQ), Vienna, Austria.
University of Vienna, Faculty of Physics and Vienna Doctoral School in Physics, Boltzmanngasse 5, A-1090 Vienna, Austria.
Sci Adv. 2024 Jun 14;10(24):eado0215. doi: 10.1126/sciadv.ado0215.
Precision interferometry with quantum states has emerged as an essential tool for experimentally answering fundamental questions in physics. Optical quantum interferometers are of particular interest because of mature methods for generating and manipulating quantum states of light. Their increased sensitivity promises to enable tests of quantum phenomena, such as entanglement, in regimes where tiny gravitational effects come into play. However, this requires long and decoherence-free processing of quantum entanglement, which, for large interferometric areas, remains unexplored territory. Here, we present a table-top experiment using maximally path-entangled quantum states of light in a large-scale interferometer sensitive enough to measure the rotation rate of Earth. The achieved sensitivity of 5 μrad s constitutes the highest rotation resolution ever reached with optical quantum interferometers. Further improvements to our methodology will enable measurements of general-relativistic effects on entangled photons, allowing the exploration of the interplay between quantum mechanics and general relativity, along with tests for fundamental physics.
利用量子态的精密干涉测量法已成为通过实验回答物理学基本问题的重要工具。光学量子干涉仪尤其受关注,因为产生和操纵光量子态的方法已经成熟。其灵敏度的提高有望在微小引力效应起作用的情况下对量子现象(如纠缠)进行测试。然而,这需要对量子纠缠进行长时间且无退相干的处理,对于大面积干涉测量而言,这仍是未被探索的领域。在此,我们展示了一个桌面实验,该实验在一个大型干涉仪中使用光的最大路径纠缠量子态,其灵敏度足以测量地球的自转速率。所实现的5微弧度每秒的灵敏度是光学量子干涉仪迄今达到的最高旋转分辨率。对我们方法的进一步改进将能够测量广义相对论对纠缠光子的影响,从而探索量子力学与广义相对论之间的相互作用,以及进行基础物理学测试。