Margalit Yair, Dobkowski Or, Zhou Zhifan, Amit Omer, Japha Yonathan, Moukouri Samuel, Rohrlich Daniel, Mazumdar Anupam, Bose Sougato, Henkel Carsten, Folman Ron
Department of Physics, Ben-Gurion University of the Negev, 84105 Be'er Sheva, Israel.
Van Swinderen Institute, University of Groningen, 9747 AG Groningen, Netherlands.
Sci Adv. 2021 May 28;7(22). doi: 10.1126/sciadv.abg2879. Print 2021 May.
The Stern-Gerlach effect, found a century ago, has become a paradigm of quantum mechanics. Unexpectedly, until recently, there has been little evidence that the original scheme with freely propagating atoms exposed to gradients from macroscopic magnets is a fully coherent quantum process. Several theoretical studies have explained why a Stern-Gerlach interferometer is a formidable challenge. Here, we provide a detailed account of the realization of a full-loop Stern-Gerlach interferometer for single atoms and use the acquired understanding to show how this setup may be used to realize an interferometer for macroscopic objects doped with a single spin. Such a realization would open the door to a new era of fundamental probes, including the realization of previously inaccessible tests at the interface of quantum mechanics and gravity.
一个世纪前发现的斯特恩-盖拉赫效应已成为量子力学的一个范例。出乎意料的是,直到最近,几乎没有证据表明,让自由传播的原子暴露于宏观磁体产生的梯度中的原始方案是一个完全相干的量子过程。一些理论研究解释了为什么斯特恩-盖拉赫干涉仪是一个巨大的挑战。在此,我们详细阐述了单原子全循环斯特恩-盖拉赫干涉仪的实现,并利用所获得的认识展示了如何使用该装置来实现用于掺杂单个自旋的宏观物体的干涉仪。这样的实现将开启一个基础探测新时代的大门,包括实现量子力学与引力界面处以前无法进行的测试。