Laboratory of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
Centre for Haematology and Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, Du Cane Road, London, W12 0NN, UK.
Comput Biol Med. 2024 Aug;178:108735. doi: 10.1016/j.compbiomed.2024.108735. Epub 2024 Jun 13.
Acute myeloid leukemia (AML) is the most common malignant myeloid disorder in adults and the fifth most common malignancy in children, necessitating advanced technologies for outcome prediction.
This study aims to enhance prognostic capabilities in AML by integrating multi-omics data, especially gene expression and methylation, through network-based feature selection methodologies. By employing artificial intelligence and network analysis, we are exploring different methods to build a machine learning model for predicting AML patient survival. We evaluate the effectiveness of combining omics data, identify the most informative method for network integration and compare the performance with standard feature selection methods.
Our findings demonstrate that integrating gene expression and methylation data significantly improves prediction accuracy compared to single omics data. Among network integration methods, our study identifies the best approach that improves informative feature selection for predicting patient outcomes in AML. Comparative analyses demonstrate the superior performance of the proposed network-based methods over standard techniques.
This research presents an innovative and robust methodology for building a survival prediction model tailored to AML patients. By leveraging multilayer network analysis for feature selection, our approach contributes to improving the understanding and prognostic capabilities in AML and laying the foundation for more effective personalized therapeutic interventions in the future.
急性髓系白血病(AML)是成人中最常见的恶性髓系疾病,也是儿童中第五大常见恶性肿瘤,因此需要先进的技术来进行预后预测。
本研究旨在通过网络为基础的特征选择方法,整合多组学数据,特别是基因表达和甲基化数据,来增强 AML 的预后能力。通过人工智能和网络分析,我们正在探索不同的方法来构建预测 AML 患者生存的机器学习模型。我们评估了整合组学数据的有效性,确定了网络整合最有效的方法,并将其与标准特征选择方法进行了比较。
我们的研究结果表明,与单一组学数据相比,整合基因表达和甲基化数据可显著提高预测准确性。在网络整合方法中,我们确定了最佳方法,可改善对 AML 患者预后预测的信息特征选择。对比分析表明,所提出的基于网络的方法优于标准技术。
本研究提出了一种针对 AML 患者的生存预测模型的创新且稳健的方法。通过使用多层网络分析进行特征选择,我们的方法有助于提高对 AML 的理解和预后能力,并为未来更有效的个性化治疗干预奠定基础。