Qin Yu, Pu Xuexue, Hu Dingtao, Yang Mingzhen
Department of Hematology, First Affiliated Hospital of Anhui Medical University, 218Jixi Road, Hefei, 230022, Anhui, China.
Department of Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, 218Jixi Road, Hefei, 230022, Anhui, China.
Sci Rep. 2024 Aug 2;14(1):17874. doi: 10.1038/s41598-024-68755-3.
Acute myeloid leukemia (AML) exhibits pronounced heterogeneity and chemotherapy resistance. Aberrant programmed cell death (PCD) implicated in AML pathogenesis suggests PCD-related signatures could serve as biomarkers to predict clinical outcomes and drug response. We utilized 13 PCD pathways, including apoptosis, pyroptosis, ferroptosis, autophagy, necroptosis, cuproptosis, parthanatos, entotic cell death, netotic cell death, lysosome-dependent cell death, alkaliptosis, oxeiptosis, and disulfidptosis to develop predictive models based on 73 machine learning combinations from 10 algorithms. Bulk RNA-sequencing, single-cell RNA-sequencing transcriptomic data, and matched clinicopathological information were obtained from the TCGA-AML, Tyner, and GSE37642-GPL96 cohorts. These datasets were leveraged to construct and validate the models. Additionally, in vitro experiments were conducted to substantiate the bioinformatics findings. The machine learning approach established a 6-gene pan-programmed cell death-related genes index (PPCDI) signature. Validation in two external cohorts showed high PPCDI associated with worse prognosis in AML patients. Incorporating PPCDI with clinical variables, we constructed several robust prognostic nomograms that accurately predicted prognosis of AML patients. Multi-omics analysis integrating bulk and single-cell transcriptomics revealed correlations between PPCDI and immunological features, delineating the immune microenvironment landscape in AML. Patients with high PPCDI exhibited resistance to conventional chemotherapy like doxorubicin but retained sensitivity to dasatinib and methotrexate (FDA-approved drugs for other leukemias), suggesting the potential of PPCDI to guide personalized therapy selection in AML. In summary, we developed a novel PPCDI model through comprehensive analysis of diverse programmed cell death pathways. This PPCDI signature demonstrates great potential in predicting clinical prognosis and drug sensitivity phenotypes in AML patients.
急性髓系白血病(AML)表现出明显的异质性和化疗耐药性。与AML发病机制相关的异常程序性细胞死亡(PCD)表明,PCD相关特征可作为预测临床结果和药物反应的生物标志物。我们利用13条PCD途径,包括细胞凋亡、焦亡、铁死亡、自噬、坏死性凋亡、铜死亡、PARP-1依赖性细胞死亡、内吞性细胞死亡、NETosis、溶酶体依赖性细胞死亡、碱中毒、氧化应激诱导的细胞死亡和二硫键诱导的细胞死亡,基于10种算法的73种机器学习组合开发预测模型。从TCGA-AML、Tyner和GSE37642-GPL96队列中获取批量RNA测序、单细胞RNA测序转录组数据以及匹配的临床病理信息。利用这些数据集构建并验证模型。此外,进行了体外实验以证实生物信息学研究结果。机器学习方法建立了一个6基因泛程序性细胞死亡相关基因指数(PPCDI)特征。在两个外部队列中的验证表明,高PPCDI与AML患者较差的预后相关。将PPCDI与临床变量相结合,我们构建了几个强大的预后列线图,能够准确预测AML患者的预后。整合批量和单细胞转录组学的多组学分析揭示了PPCDI与免疫特征之间的相关性,描绘了AML中的免疫微环境格局。高PPCDI的患者对阿霉素等传统化疗药物耐药,但对达沙替尼和甲氨蝶呤(FDA批准用于其他白血病的药物)仍敏感,这表明PPCDI在指导AML个性化治疗选择方面具有潜力。总之,我们通过对多种程序性细胞死亡途径的综合分析开发了一种新型PPCDI模型。这种PPCDI特征在预测AML患者的临床预后和药物敏感性表型方面具有巨大潜力。