Suppr超能文献

基于肿瘤内和肿瘤周围 CT 影像组学列线图预测非小细胞肺癌的程序性死亡受体-1 表达状态。

Prediction of programmed death-1 expression status in non-small cell lung cancer based on intratumoural and peritumoral computed tomography (CT) radiomics nomogram.

机构信息

Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, PR China.

Department of Medical Imaging Center, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, PR China.

出版信息

Clin Radiol. 2024 Sep;79(9):e1089-e1100. doi: 10.1016/j.crad.2024.05.008. Epub 2024 May 16.

Abstract

AIMS

This study aimed to predict the expression of programmed death-1 (PD-1) in non-small cell lung cancer (NSCLC) using intratumoral and peritumoral computed tomography (CT) radiomics nomogram.

MATERIALS AND METHODS

Two hundred patients pathologically diagnosed with NSCLC from two hospitals were retrospectively analyzed. Of these, 159 NSCLC patients from our hospital were randomly divided into a training cohort (n=96) and an internal validation cohort (n=63) at a ratio of 6:4, while 41 NSCLC patients from another medical institution served as the external validation cohort. The radiomic features of the gross tumor volume (GTV) and peritumoral volume (PTV) were extracted from the CT images. Optimal radiomics features were selected using least absolute shrinkage and selection operator regression analysis. Finally, a CT radiomics nomogram of clinically independent predictors combined with the best rad-score was constructed.

RESULTS

Compared with the 'GTV' and 'PTV' radiomics models, the combined 'GTV + PTV' radiomics model showed better predictive performance, and its area under the curve (AUC) values in the training, internal validation, and external validation cohorts were 0.90 (95% confidence interval [CI]: 0.83-0.97), 0.85 (95% CI: 0.74-0.96) and 0.78 (95% CI: 0.63-0.92). The nomogram constructed by the rad-score of the 'GTV + PTV' radiomics model combined with clinical independent predictors (prealbumin and monocyte) had the best performance, with AUC values in each cohort being 0.92 (95% CI: 0.85-0.98), 0.88 (95% CI: 0.78-0.97), and 0.80 (95% CI: 0.66-0.94), respectively.

CONCLUSION

The intratumoral and peritumoral CT radiomics nomogram may facilitate individualized prediction of PD-1 expression status in patients with NSCLC.

摘要

目的

本研究旨在通过肿瘤内和肿瘤周围 CT 放射组学列线图预测非小细胞肺癌(NSCLC)中程序性死亡受体-1(PD-1)的表达。

材料和方法

回顾性分析了两家医院经病理诊断为 NSCLC 的 200 例患者。其中,我院 159 例 NSCLC 患者按 6:4 的比例随机分为训练队列(n=96)和内部验证队列(n=63),另一医疗机构的 41 例 NSCLC 患者为外部验证队列。从 CT 图像中提取大体肿瘤体积(GTV)和肿瘤周围体积(PTV)的放射组学特征。采用最小绝对收缩和选择算子回归分析选择最优放射组学特征。最后,构建了一个结合临床独立预测因子和最佳 rad-score 的 CT 放射组学列线图。

结果

与“GTV”和“PTV”放射组学模型相比,联合“GTV+PTV”放射组学模型显示出更好的预测性能,其在训练、内部验证和外部验证队列中的曲线下面积(AUC)值分别为 0.90(95%置信区间[CI]:0.83-0.97)、0.85(95% CI:0.74-0.96)和 0.78(95% CI:0.63-0.92)。由“GTV+PTV”放射组学模型的 rad-score 与临床独立预测因子(前白蛋白和单核细胞)联合构建的列线图具有最佳性能,在每个队列中的 AUC 值分别为 0.92(95% CI:0.85-0.98)、0.88(95% CI:0.78-0.97)和 0.80(95% CI:0.66-0.94)。

结论

肿瘤内和肿瘤周围 CT 放射组学列线图可有助于个体化预测 NSCLC 患者 PD-1 表达状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验