Suppr超能文献

CT上小细胞肺癌鉴别诊断的瘤周放射组学特征:手术决策的潜力

Peritumoral Radiomic Features on CT for Differential Diagnosis in Small-Cell Lung Cancer: Potential for Surgical Decision-Making.

作者信息

Lin Jie, Zheng Hao, Dong Yuan, Fu Lanqi, Ding Yujie, Huang Shucheng, Wang Shiwei, Wang Junna

机构信息

Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, PR China.

出版信息

Cancer Control. 2025 Jan-Dec;32:10732748251351754. doi: 10.1177/10732748251351754. Epub 2025 Jun 16.

Abstract

Small-cell lung cancer (SCLC) is a leading cause of cancer-related mortality worldwide, with limited therapeutic outcomes and poor prognosis. Accurate diagnosis and optimal surgical decision-making remain critical challenges. This study aimed to develop and validate a clinical-radiomics nomogram integrating computed tomography (CT) radiomic features of the peritumoral region and clinical factors to improve SCLC diagnosis and guide surgical planning. A retrospective cohort of 113 patients (54 SCLC, 59 non-small cell lung cancer) was analyzed. CT images were processed to extract 1050 radiomic features from both intratumoral and peritumoral (2-mm expanded) ROIs. Feature selection was performed using t-tests, LASSO regression, and mRMR analysis. Logistic regression models were constructed for original and expanded ROIs, and a clinical-radiomics nomogram was developed by combining significant radiomic features with independent clinical predictors (gender, smoking history, tumor diameter, glitch, and neuron-specific enolase levels). Model performance was evaluated using ROC curves, AUC, sensitivity, specificity, and CIC curves. The expanded ROI radiomics model outperformed the original ROI and clinical models, achieving higher accuracy (0.83 vs 0.76/0.70), sensitivity (0.80 vs 0.74/0.77), specificity (0.85 vs 0.75/0.65), and AUC (0.85 vs 0.76/0.71). The clinical-radiomics nomogram demonstrated superior diagnostic performance, with an AUC of 0.96 (95% CI: 0.88-1.00), accuracy of 0.91, sensitivity of 0.92, and specificity of 0.90. CIC analysis confirmed its clinical utility for surgical decision-making at intermediate-risk thresholds. The integration of peritumoral radiomic features and clinical factors into a nomogram provides a non-invasive tool for SCLC diagnosis and surgical planning. The superiority of the expanded model substantiates the potential presence of SCLC in peri-tumoral tissues that may be imperceptible through conventional imaging, thereby offering guidance for surgical decision-making. This approach has potential for improving treatment outcomes and warrants further validation in multicenter studies.

摘要

小细胞肺癌(SCLC)是全球癌症相关死亡的主要原因之一,治疗效果有限且预后较差。准确诊断和优化手术决策仍然是关键挑战。本研究旨在开发并验证一种临床-放射组学列线图,该列线图整合瘤周区域的计算机断层扫描(CT)放射组学特征和临床因素,以改善SCLC诊断并指导手术规划。对113例患者(54例SCLC,59例非小细胞肺癌)的回顾性队列进行了分析。对CT图像进行处理,以从瘤内和瘤周(扩展2毫米)感兴趣区域(ROI)提取1050个放射组学特征。使用t检验、LASSO回归和mRMR分析进行特征选择。为原始和扩展ROI构建逻辑回归模型,并通过将显著的放射组学特征与独立的临床预测因素(性别、吸烟史、肿瘤直径、毛刺征和神经元特异性烯醇化酶水平)相结合来开发临床-放射组学列线图。使用ROC曲线、AUC、敏感性、特异性和CIC曲线评估模型性能。扩展ROI放射组学模型优于原始ROI和临床模型,在准确性(0.83对0.76/0.70)、敏感性(0.80对0.74/0.77)、特异性(0.85对0.75/0.65)和AUC(0.85对0.76/0.71)方面表现更高。临床-放射组学列线图显示出卓越的诊断性能,AUC为0.96(95%CI:0.88 - 1.00),准确性为0.91,敏感性为0.92,特异性为0.90。CIC分析证实了其在中等风险阈值下用于手术决策的临床实用性。将瘤周放射组学特征和临床因素整合到列线图中,为SCLC诊断和手术规划提供了一种非侵入性工具。扩展模型的优越性证实了瘤周组织中可能存在通过传统成像难以察觉的SCLC,从而为手术决策提供指导。这种方法具有改善治疗效果的潜力,值得在多中心研究中进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a24/12174677/e783a7edecee/10.1177_10732748251351754-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验