Demirkiran Cansu, Nair Lakshmi, Bunandar Darius, Joshi Ajay
Boston University, Boston, MA, USA.
Lightmatter, Boston, MA, USA.
Nat Commun. 2024 Jun 14;15(1):5098. doi: 10.1038/s41467-024-49324-8.
Analog computing has reemerged as a promising avenue for accelerating deep neural networks (DNNs) to overcome the scalability challenges posed by traditional digital architectures. However, achieving high precision using analog technologies is challenging, as high-precision data converters are costly and impractical. In this work, we address this challenge by using the residue number system (RNS) and composing high-precision operations from multiple low-precision operations, thereby eliminating the need for high-precision data converters and information loss. Our study demonstrates that the RNS-based approach can achieve ≥99% FP32 accuracy with 6-bit integer arithmetic for DNN inference and 7-bit for DNN training. The reduced precision requirements imply that using RNS can achieve several orders of magnitude higher energy efficiency while maintaining the same throughput compared to conventional analog hardware with the same precision. We also present a fault-tolerant dataflow using redundant RNS to protect the computation against noise and errors inherent within analog hardware.
模拟计算作为加速深度神经网络(DNN)以克服传统数字架构所带来的可扩展性挑战的一种有前途的途径,已再度兴起。然而,使用模拟技术实现高精度具有挑战性,因为高精度数据转换器成本高昂且不切实际。在这项工作中,我们通过使用余数系统(RNS)并由多个低精度运算组成高精度运算来应对这一挑战,从而消除了对高精度数据转换器的需求以及信息损失。我们的研究表明,基于RNS的方法在DNN推理中使用6位整数运算、在DNN训练中使用7位整数运算时,可实现≥99%的FP32精度。与具有相同精度的传统模拟硬件相比,精度要求的降低意味着使用RNS可以在保持相同吞吐量的同时实现几个数量级更高的能源效率。我们还提出了一种使用冗余RNS的容错数据流,以保护计算免受模拟硬件中固有的噪声和错误影响。