Suppr超能文献

基于硅光子权值库的神经形态光子网络。

Neuromorphic photonic networks using silicon photonic weight banks.

机构信息

Department of Electrical Engineering, Princeton University, Princeton, New Jersey, 08544, USA.

出版信息

Sci Rep. 2017 Aug 7;7(1):7430. doi: 10.1038/s41598-017-07754-z.

Abstract

Photonic systems for high-performance information processing have attracted renewed interest. Neuromorphic silicon photonics has the potential to integrate processing functions that vastly exceed the capabilities of electronics. We report first observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks. A mathematical isomorphism between the silicon photonic circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, a simulated 24-node silicon photonic neural network is programmed using "neural compiler" to solve a differential system emulation task. A 294-fold acceleration against a conventional benchmark is predicted. We also propose and derive power consumption analysis for modulator-class neurons that, as opposed to laser-class neurons, are compatible with silicon photonic platforms. At increased scale, Neuromorphic silicon photonics could access new regimes of ultrafast information processing for radio, control, and scientific computing.

摘要

光子学系统在高性能信息处理方面引起了新的关注。神经形态硅光子学有可能集成处理功能,这些功能远远超过电子学的能力。我们首次观察到了一种递归硅光子神经网络,其中连接是通过微环权重库配置的。通过动态分岔分析,证明了硅光子电路与连续神经网络模型之间存在数学同构。利用这种同构,使用“神经编译器”对模拟的 24 节点硅光子神经网络进行编程,以解决微分系统仿真任务。预计将比传统基准测试快 294 倍。我们还提出并推导了调制器类神经元的功耗分析,与激光类神经元不同,调制器类神经元与硅光子平台兼容。在更大的规模上,神经形态硅光子学可以访问无线电、控制和科学计算的超快信息处理的新领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9475/5547135/60e7484f8c24/41598_2017_7754_Fig1_HTML.jpg

相似文献

1
Neuromorphic photonic networks using silicon photonic weight banks.
Sci Rep. 2017 Aug 7;7(1):7430. doi: 10.1038/s41598-017-07754-z.
2
On-chip silicon photonic signaling and processing: a review.
Sci Bull (Beijing). 2018 Oct 15;63(19):1267-1310. doi: 10.1016/j.scib.2018.05.038. Epub 2018 Jul 12.
3
Neuromorphic Photonic Memory Devices Using Ultrafast, Non-Volatile Phase-Change Materials.
Adv Mater. 2023 Sep;35(37):e2203909. doi: 10.1002/adma.202203909. Epub 2022 Jul 13.
4
Integrated silicon photonic MEMS.
Microsyst Nanoeng. 2023 Mar 20;9:27. doi: 10.1038/s41378-023-00498-z. eCollection 2023.
5
6
Nonvolatile Electrically Reconfigurable Integrated Photonic Switch Enabled by a Silicon PIN Diode Heater.
Adv Mater. 2020 Aug;32(31):e2001218. doi: 10.1002/adma.202001218. Epub 2020 Jun 26.
7
Photonics for Neuromorphic Computing: Fundamentals, Devices, and Opportunities.
Adv Mater. 2025 Jan;37(2):e2312825. doi: 10.1002/adma.202312825. Epub 2024 Jul 16.
10
Neuromorphic Photonics Based on Phase Change Materials.
Nanomaterials (Basel). 2023 May 29;13(11):1756. doi: 10.3390/nano13111756.

引用本文的文献

2
Digital-analog hybrid matrix multiplication processor for optical neural networks.
Nat Commun. 2025 Aug 12;16(1):7465. doi: 10.1038/s41467-025-62586-0.
4
RF-photonic deep learning processor with Shannon-limited data movement.
Sci Adv. 2025 Jun 13;11(24):eadt3558. doi: 10.1126/sciadv.adt3558. Epub 2025 Jun 11.
5
Hypermultiplexed integrated photonics-based optical tensor processor.
Sci Adv. 2025 Jun 6;11(23):eadu0228. doi: 10.1126/sciadv.adu0228. Epub 2025 Jun 4.
6
Programmable photonic unitary circuits for light computing.
Nanophotonics. 2025 Feb 14;14(10):1429-1449. doi: 10.1515/nanoph-2024-0602. eCollection 2025 May.
8
Flex multimode neural network for complete optical computation.
iScience. 2025 Apr 8;28(5):112376. doi: 10.1016/j.isci.2025.112376. eCollection 2025 May 16.
9
An integrated large-scale photonic accelerator with ultralow latency.
Nature. 2025 Apr;640(8058):361-367. doi: 10.1038/s41586-025-08786-6. Epub 2025 Apr 9.

本文引用的文献

1
Multi-channel control for microring weight banks.
Opt Express. 2016 Apr 18;24(8):8895-906. doi: 10.1364/OE.24.008895.
2
Fully analogue photonic reservoir computer.
Sci Rep. 2016 Mar 3;6:22381. doi: 10.1038/srep22381.
3
Regenerative memory in time-delayed neuromorphic photonic resonators.
Sci Rep. 2016 Jan 19;6:19510. doi: 10.1038/srep19510.
5
Spike processing with a graphene excitable laser.
Sci Rep. 2016 Jan 12;6:19126. doi: 10.1038/srep19126.
7
Reconfigurable semiconductor laser networks based on diffractive coupling.
Opt Lett. 2015 Aug 15;40(16):3854-7. doi: 10.1364/OL.40.003854.
8
Minimal approach to neuro-inspired information processing.
Front Comput Neurosci. 2015 Jun 2;9:68. doi: 10.3389/fncom.2015.00068. eCollection 2015.
10
Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface.
Science. 2014 Aug 8;345(6197):668-73. doi: 10.1126/science.1254642. Epub 2014 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验