Suppr超能文献

一种基于模数运算的模数转换架构。

A Modulo-Based Architecture for Analog-to-Digital Conversion.

作者信息

Ordentlich Or, Tabak Gizem, Hanumolu Pavan Kumar, Singer Andrew C, Wornell Gregory W

机构信息

Hebrew University of Jerusalem, Israel.

University of Illinois, Urbana-Champaign, USA.

出版信息

IEEE J Sel Top Signal Process. 2018 Oct;12(5):825-840. doi: 10.1109/jstsp.2018.2863189. Epub 2018 Aug 6.

Abstract

Systems that capture and process analog signals must first acquire them through an analog-to-digital converter. While subsequent digital processing can remove statistical correlations present in the acquired data, the dynamic range of the converter is typically scaled to match that of the input analog signal. The present paper develops an approach for analog-to-digital conversion that aims at minimizing the number of bits per sample at the output of the converter. This is attained by reducing the dynamic range of the analog signal by performing a modulo operation on its amplitude, and then quantizing the result. While the converter itself is universal and agnostic of the statistics of the signal, the decoder operation on the output of the quantizer can exploit the statistical structure in order to unwrap the modulo folding. The performance of this method is shown to approach information theoretical limits, as captured by the rate-distortion function, in various settings. An architecture for modulo analog-to-digital conversion via ring oscillators is suggested, and its merits are numerically demonstrated.

摘要

捕获和处理模拟信号的系统必须首先通过模数转换器来采集信号。虽然后续的数字处理可以消除采集数据中存在的统计相关性,但转换器的动态范围通常会进行缩放,以匹配输入模拟信号的动态范围。本文提出了一种模数转换方法,旨在最小化转换器输出端每个样本的位数。这是通过对模拟信号的幅度进行模运算来减小其动态范围,然后对结果进行量化来实现的。虽然转换器本身是通用的,且与信号的统计特性无关,但量化器输出端的解码器操作可以利用统计结构来解开模折叠。在各种设置下,该方法的性能被证明接近由率失真函数所描述的信息理论极限。文中还提出了一种通过环形振荡器实现模模数转换的架构,并通过数值方法证明了其优点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3468/7970709/e178479b3e68/nihms-1508776-f0001.jpg

相似文献

1
A Modulo-Based Architecture for Analog-to-Digital Conversion.一种基于模数运算的模数转换架构。
IEEE J Sel Top Signal Process. 2018 Oct;12(5):825-840. doi: 10.1109/jstsp.2018.2863189. Epub 2018 Aug 6.
3
Deep Task-Based Quantization.基于深度任务的量化
Entropy (Basel). 2021 Jan 13;23(1):104. doi: 10.3390/e23010104.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验