Department of Biological Sciences, Columbia University, New York, NY, USA.
Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
Nat Commun. 2024 Jun 14;15(1):5097. doi: 10.1038/s41467-024-49326-6.
Genome organization is thought to underlie cell type specific gene expression, yet how it is regulated in progenitors to produce cellular diversity is unknown. In Drosophila, a developmentally-timed genome reorganization in neural progenitors terminates competence to produce early-born neurons. These events require downregulation of Distal antenna (Dan), part of the conserved pipsqueak DNA-binding superfamily. Here we find that Dan forms liquid-like condensates with high protein mobility, and whose size and subnuclear distribution are balanced with its DNA-binding. Further, we identify a LARKS domain, a structural motif associated with condensate-forming proteins. Deleting just 13 amino acids from LARKS abrogates Dan's ability to retain the early-born neural fate gene, hunchback, in the neuroblast nuclear interior and maintain competence in vivo. Conversely, domain-swapping with LARKS from known phase-separating proteins rescues Dan's effects on competence. Together, we provide in vivo evidence for condensate formation and the regulation of progenitor nuclear architecture underlying neuronal diversification.
基因组组织被认为是细胞类型特异性基因表达的基础,但它如何在祖细胞中被调控以产生细胞多样性尚不清楚。在果蝇中,神经祖细胞中发育时间的基因组重排终止了产生早期神经元的能力。这些事件需要下调 Distal antenna (Dan),它是保守的 pipsqueak DNA 结合超家族的一部分。在这里,我们发现 Dan 与高蛋白质流动性形成液态样凝聚物,其大小和亚核分布与其 DNA 结合相平衡。此外,我们鉴定出一个 LARKS 结构域,这是与凝聚物形成蛋白相关的结构基序。仅从 LARKS 中删除 13 个氨基酸就会破坏 Dan 将早期出生的神经命运基因 hunchback 保留在神经母细胞核内并维持体内能力的能力。相反,与已知相分离蛋白的 LARKS 进行结构域交换可以挽救 Dan 对能力的影响。总之,我们提供了体内证据,证明了凝聚物的形成和祖细胞核架构的调控是神经元多样化的基础。