Gemeinhardt Tim M, Regy Roshan M, Phan Tien M, Pal Nanu, Sharma Jyoti, Senkovich Olga, Mendiola Andrea J, Ledterman Heather J, Henrickson Amy, Lopes Daniel, Kapoor Utkarsh, Bihani Ashish, Sihou Djamouna, Kim Young C, Jeruzalmi David, Demeler Borries, Kim Chongwoo A, Mittal Jeetain, Francis Nicole J
Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
Mol Cell. 2025 May 23. doi: 10.1016/j.molcel.2025.05.008.
Biomolecular condensates are increasingly recognized as key regulators of chromatin organization, yet how their formation and properties arise from protein sequences remains incompletely understood. Cross-species comparisons can reveal both conserved functions and significant evolutionary differences. Here, we integrate in vitro reconstitution, molecular dynamics simulations, and cell-based assays to examine how Drosophila and human variants of Polyhomeotic (Ph)-a subunit of the PRC1 chromatin regulatory complex-drive condensate formation through their sterile alpha motif (SAM) oligomerization domains. We identify divergent interactions between SAM and the disordered linker connecting it to the rest of Ph. These interactions enhance oligomerization and modulate both the formation and properties of reconstituted condensates. Oligomerization influences condensate dynamics but minimally impacts condensate formation. Linker-SAM interactions also affect condensate formation in Drosophila and human cells and growth in Drosophila imaginal discs. Our findings show how evolutionary changes in disordered linkers can fine-tune condensate properties, providing insights into sequence-function relationships.
生物分子凝聚物越来越被认为是染色质组织的关键调节因子,然而它们的形成和特性如何从蛋白质序列中产生仍未完全理解。跨物种比较可以揭示保守功能和显著的进化差异。在这里,我们整合了体外重组、分子动力学模拟和基于细胞的分析,以研究果蝇和人类PRC1染色质调节复合物的多同源盒(Ph)-a亚基的变体如何通过其无菌α基序(SAM)寡聚化结构域驱动凝聚物形成。我们确定了SAM与将其连接到Ph其余部分的无序连接子之间的不同相互作用。这些相互作用增强了寡聚化,并调节了重组凝聚物的形成和特性。寡聚化影响凝聚物动力学,但对凝聚物形成的影响最小。连接子-SAM相互作用也影响果蝇和人类细胞中的凝聚物形成以及果蝇成虫盘中的生长。我们的研究结果表明无序连接子中的进化变化如何微调凝聚物特性,为序列-功能关系提供了见解。