Suppr超能文献

使用双参数最小二乘法拟合提高 ADPKD 患者总肾体积增长率的预测。

Improved predictions of total kidney volume growth rate in ADPKD using two-parameter least squares fitting.

机构信息

Department of Radiology, Weill Cornell Medicine, New York, 10022, USA.

The Rogosin Institute, New York, 10021, USA.

出版信息

Sci Rep. 2024 Jun 14;14(1):13794. doi: 10.1038/s41598-024-62776-8.

Abstract

Mayo Imaging Classification (MIC) for predicting future kidney growth in autosomal dominant polycystic kidney disease (ADPKD) patients is calculated from a single MRI/CT scan assuming exponential kidney volume growth and height-adjusted total kidney volume at birth to be 150 mL/m. However, when multiple scans are available, how this information should be combined to improve prediction accuracy is unclear. Herein, we studied ADPKD subjects ( ) with 8+ years imaging follow-up (mean = 11 years) to establish ground truth kidney growth trajectory. MIC annual kidney growth rate predictions were compared to ground truth as well as 1- and 2-parameter least squares fitting. The annualized mean absolute error in MIC for predicting total kidney volume growth rate was compared to ( ) for a 2-parameter fit to the same exponential growth curve used for MIC when 4 measurements were available or ( ) with 3 measurements averaging together with MIC. On univariate analysis, male sex ( ) and PKD2 mutation ( ) were associated with poorer MIC performance. In ADPKD patients with 3 or more CT/MRI scans, 2-parameter least squares fitting predicted kidney volume growth rate better than MIC, especially in males and with PKD2 mutations where MIC was less accurate.

摘要

梅奥影像学分类(MIC)用于预测常染色体显性多囊肾病(ADPKD)患者未来的肾脏生长,其计算基于单次 MRI/CT 扫描,假设肾脏体积呈指数增长,出生时身高校正的总肾脏体积为 150 mL/m。然而,当有多份扫描结果时,如何结合这些信息以提高预测准确性尚不清楚。在此,我们研究了具有 8 年以上影像学随访(平均 11 年)的 ADPKD 患者(),以建立真实的肾脏生长轨迹。将 MIC 的年度肾脏生长率预测与真实值以及 1 参数和 2 参数最小二乘法拟合进行比较。MIC 预测总肾脏体积增长率的年化平均绝对误差为,而当有 4 次测量值时,2 参数拟合相同的 MIC 所使用的指数生长曲线的平均绝对误差为,当有 3 次测量值与 MIC 一起平均时的平均绝对误差为。单因素分析显示,男性()和 PKD2 突变()与 MIC 性能较差相关。在有 3 次或更多 CT/MRI 扫描的 ADPKD 患者中,2 参数最小二乘法拟合预测肾脏体积增长率优于 MIC,尤其是在男性和 PKD2 突变患者中,MIC 准确性较差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c5b/11178802/91d926136fab/41598_2024_62776_Fig1_HTML.jpg

相似文献

5
Interventions for preventing the progression of autosomal dominant polycystic kidney disease.
Cochrane Database Syst Rev. 2024 Oct 2;10(10):CD010294. doi: 10.1002/14651858.CD010294.pub3.
6
Interventions for preventing the progression of autosomal dominant polycystic kidney disease.
Cochrane Database Syst Rev. 2015 Jul 14;2015(7):CD010294. doi: 10.1002/14651858.CD010294.pub2.
10
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.

本文引用的文献

1
An Artificial Intelligence Generated Automated Algorithm to Measure Total Kidney Volume in ADPKD.
Kidney Int Rep. 2023 Nov 4;9(2):249-256. doi: 10.1016/j.ekir.2023.10.029. eCollection 2024 Feb.
2
Comparing Effects of Tolvaptan and Instruction to Increase Water Consumption in ADPKD: Post Hoc Analysis of TEMPO 3:4.
Kidney360. 2023 Dec 1;4(12):1702-1707. doi: 10.34067/KID.0000000000000302. Epub 2023 Nov 21.
3
Test Retest Reproducibility of Organ Volume Measurements in ADPKD Using 3D Multimodality Deep Learning.
Acad Radiol. 2024 Mar;31(3):889-899. doi: 10.1016/j.acra.2023.09.009. Epub 2023 Oct 3.
4
How to Estimate Kidney Growth in Patients with Autosomal Dominant Polycystic Kidney Disease.
J Am Soc Nephrol. 2023 Jun 1;34(6):944-950. doi: 10.1681/ASN.0000000000000130. Epub 2023 Mar 30.
5
Clinical Implementation of an Artificial Intelligence Algorithm for Magnetic Resonance-Derived Measurement of Total Kidney Volume.
Mayo Clin Proc. 2023 May;98(5):689-700. doi: 10.1016/j.mayocp.2022.12.019. Epub 2023 Mar 16.
6
Atypical Polycystic Kidney Disease as defined by Imaging.
Sci Rep. 2023 Feb 20;13(1):2952. doi: 10.1038/s41598-022-24104-w.
7
Risk Severity Model for Pediatric Autosomal Dominant Polycystic Kidney Disease Using 3D Ultrasound Volumetry.
Clin J Am Soc Nephrol. 2023 May 1;18(5):581-591. doi: 10.2215/CJN.0000000000000122. Epub 2023 Feb 17.
8
Current Challenges and Perspectives on Developing a Clinical Trial Design for ADPKD.
Clin J Am Soc Nephrol. 2022 Oct;17(10):1559-1562. doi: 10.2215/CJN.05360522. Epub 2022 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验