Suppr超能文献

基于机器学习的支架植入术后胆管炎风险预测。

Risk prediction of cholangitis after stent implantation based on machine learning.

机构信息

The First Affiliated Hospital of Bengbu Medical University, Yanhuai Road, Bengbu, 233000, China.

School of Mechanical Engineering, Hefei University of Technology, Hefei, 230009, China.

出版信息

Sci Rep. 2024 Jun 14;14(1):13715. doi: 10.1038/s41598-024-64734-w.

Abstract

The risk of cholangitis after ERCP implantation in malignant obstructive jaundice patients remains unknown. To develop models based on artificial intelligence methods to predict cholangitis risk more accurately, according to patients after stent implantation in patients' MOJ clinical data. This retrospective study included 218 patients with MOJ undergoing ERCP surgery. A total of 27 clinical variables were collected as input variables. Seven models (including univariate analysis and six machine learning models) were trained and tested for classified prediction. The model' performance was measured by AUROC. The RFT model demonstrated excellent performances with accuracies up to 0.86 and AUROC up to 0.87. Feature selection in RF and SHAP was similar, and the choice of the best variable subset produced a high performance with an AUROC up to 0.89. We have developed a hybrid machine learning model with better predictive performance than traditional LR prediction models, as well as other machine learning models for cholangitis based on simple clinical data. The model can assist doctors in clinical diagnosis, adopt reasonable treatment plans, and improve the survival rate of patients.

摘要

在恶性梗阻性黄疸患者中,经内镜逆行胰胆管造影(ERCP)植入支架后发生胆管炎的风险尚不清楚。为了开发基于人工智能方法的模型,更准确地预测胆管炎风险,本研究根据患者支架植入后的临床数据进行。本回顾性研究纳入 218 例接受 ERCP 手术的 MOJ 患者。共收集了 27 个临床变量作为输入变量。对 7 个模型(包括单变量分析和 6 个机器学习模型)进行了分类预测的训练和测试。模型性能通过 AUROC 进行评估。随机森林(RF)和 SHAP 特征选择的结果相似,最佳变量子集的选择产生了高达 0.89 的 AUROC,表现出较高的性能。我们开发了一种混合机器学习模型,与传统的 LR 预测模型相比,该模型具有更好的预测性能,以及基于简单临床数据的其他胆管炎机器学习模型。该模型可以帮助医生进行临床诊断,采用合理的治疗方案,提高患者的生存率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d50f/11178872/91c1750883ea/41598_2024_64734_Fig1_HTML.jpg

相似文献

1
Risk prediction of cholangitis after stent implantation based on machine learning.
Sci Rep. 2024 Jun 14;14(1):13715. doi: 10.1038/s41598-024-64734-w.
2
Predictive risk factors associated with cholangitis following ERCP.
Surg Endosc. 2018 Feb;32(2):799-804. doi: 10.1007/s00464-017-5746-z. Epub 2017 Jul 21.
3
The risk of acute cholangitis after endoscopic stenting for malignant hilar strictures: A large comprehensive study.
J Gastroenterol Hepatol. 2020 Jul;35(7):1150-1157. doi: 10.1111/jgh.14954. Epub 2019 Dec 28.
4
Endoscopic sphincterotomy associated cholangitis in patients receiving proximal biliary self-expanding metal stents.
Hepatobiliary Pancreat Dis Int. 2012 Dec 15;11(6):643-9. doi: 10.1016/s1499-3872(12)60238-0.
5
Real-life patency of plastic biliary stents in the pandemic era: is stent removal after 6 months safe and effective?
Scand J Gastroenterol. 2023 Jul;58(7):798-804. doi: 10.1080/00365521.2022.2164210. Epub 2023 Jan 9.

引用本文的文献

1
Advances in minimally invasive treatment of malignant obstructive jaundice.
World J Gastrointest Surg. 2024 Dec 27;16(12):3650-3654. doi: 10.4240/wjgs.v16.i12.3650.

本文引用的文献

1
Clinical characteristic and pathogenesis of tumor-induced acute pancreatitis: a predictive model.
BMC Gastroenterol. 2022 Sep 15;22(1):422. doi: 10.1186/s12876-022-02501-9.
2
A machine learning approach to characterize patients with asthma exacerbation attending an acute care setting.
Eur J Intern Med. 2022 Oct;104:66-72. doi: 10.1016/j.ejim.2022.07.019. Epub 2022 Jul 31.
4
Outcome of ERCP related to case-volume.
Surg Endosc. 2022 Jul;36(7):5339-5347. doi: 10.1007/s00464-021-08915-y. Epub 2022 Jan 3.
5
Machine learning in primary biliary cholangitis: A novel approach for risk stratification.
Liver Int. 2022 Mar;42(3):615-627. doi: 10.1111/liv.15141. Epub 2022 Jan 7.
8
Difficult biliary cannulation in ERCP procedures with or without trainee involvement: a comparative study.
Endoscopy. 2022 May;54(5):447-454. doi: 10.1055/a-1523-0780. Epub 2021 Aug 3.
9
Comparison of various approaches to combine logistic regression with genetic algorithms in survival prediction of hepatocellular carcinoma.
Comput Biol Med. 2021 Jul;134:104431. doi: 10.1016/j.compbiomed.2021.104431. Epub 2021 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验