College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China.
Adv Mater. 2024 Aug;36(33):e2405145. doi: 10.1002/adma.202405145. Epub 2024 Jun 26.
Biomimetic humidity sensors offer a low-power approach for respiratory monitoring in early lung-disease diagnosis. However, balancing miniaturization and energy efficiency remains challenging. This study addresses this issue by introducing a bioinspired humidity-sensing neuron comprising a self-assembled peptide nanowire (NW) memristor with unique proton-coupled ion transport. The proposed neuron shows a low Ag activation energy owing to the NW and redox activity of the tyrosine (Tyr)-rich peptide in the system, facilitating ultralow electric-field-driven threshold switching and a high energy efficiency. Additionally, Ag migration in the system can be controlled by a proton source owing to the hydrophilic nature of the phenolic hydroxyl group in Tyr, enabling the humidity-based control of the conductance state of the memristor. Furthermore, a memristor-based neuromorphic perception neuron that can encode humidity signals into spikes is proposed. The spiking characteristics of this neuron can be modulated to emulate the strength-modulated spike-frequency characteristics of biological neurons. A three-layer spiking neural network with input neurons comprising these highly tunable humidity perception neurons shows an accuracy of 92.68% in lung-disease diagnosis. This study paves the way for developing bioinspired self-assembly strategies to construct neuromorphic perception systems, bridging the gap between artificial and biological sensing and processing paradigms.
仿生湿度传感器为早期肺病诊断中的呼吸监测提供了低功耗方法。然而,平衡小型化和能量效率仍然具有挑战性。本研究通过引入一种受生物启发的湿度感应神经元来解决这个问题,该神经元由具有独特质子耦合离子传输的自组装肽纳米线 (NW) 忆阻器组成。由于系统中 NW 和富含酪氨酸 (Tyr) 的肽的氧化还原活性,所提出的神经元表现出低 Ag 活化能,从而促进超低电场驱动的阈值切换和高能量效率。此外,由于 Tyr 中酚羟基的亲水性,系统中的 Ag 迁移可以通过质子源来控制,从而能够实现基于湿度的对忆阻器电导状态的控制。此外,还提出了一种基于忆阻器的神经形态感知神经元,可将湿度信号编码为尖峰。通过调制该神经元的尖峰特性,可以模拟生物神经元的强度调制尖峰频率特性。具有由这些高度可调谐湿度感知神经元组成的输入神经元的三层尖峰神经网络在肺病诊断中的准确率达到 92.68%。本研究为开发仿生自组装策略来构建神经形态感知系统铺平了道路,弥合了人工和生物传感和处理范例之间的差距。