Suppr超能文献

基于Ag/VC/W阈值开关忆阻器的人工神经元

Artificial Neurons Based on Ag/VC/W Threshold Switching Memristors.

作者信息

Wang Yu, Chen Xintong, Shen Daqi, Zhang Miaocheng, Chen Xi, Chen Xingyu, Shao Weijing, Gu Hong, Xu Jianguang, Hu Ertao, Wang Lei, Xu Rongqing, Tong Yi

机构信息

College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

Gusu Laboratory of Materials, Suzhou 215000, China.

出版信息

Nanomaterials (Basel). 2021 Oct 27;11(11):2860. doi: 10.3390/nano11112860.

Abstract

Artificial synapses and neurons are two critical, fundamental bricks for constructing hardware neural networks. Owing to its high-density integration, outstanding nonlinearity, and modulated plasticity, memristors have attracted emerging attention on emulating biological synapses and neurons. However, fabricating a low-power and robust memristor-based artificial neuron without extra electrical components is still a challenge for brain-inspired systems. In this work, we demonstrate a single two-dimensional (2D) MXene(VC)-based threshold switching (TS) memristor to emulate a leaky integrate-and-fire (LIF) neuron without auxiliary circuits, originating from the Ag diffusion-based filamentary mechanism. Moreover, our VC-based artificial neurons faithfully achieve multiple neural functions including leaky integration, threshold-driven fire, self-relaxation, and linear strength-modulated spike frequency characteristics. This work demonstrates that three-atom-type MXene (e.g., VC) memristors may provide an efficient method to construct the hardware neuromorphic computing systems.

摘要

人工突触和神经元是构建硬件神经网络的两个关键的基本组件。由于其高密度集成、出色的非线性和可调制可塑性,忆阻器在模拟生物突触和神经元方面引起了越来越多的关注。然而,在无额外电子元件的情况下制造低功耗且稳健的基于忆阻器的人工神经元,对于受脑启发的系统来说仍是一项挑战。在这项工作中,我们展示了一种基于二维(2D)MXene(VC)的单阈值开关(TS)忆阻器,无需辅助电路即可模拟泄漏积分发放(LIF)神经元,其源于基于银扩散的丝状机制。此外,我们基于VC的人工神经元忠实地实现了多种神经功能,包括泄漏积分、阈值驱动发放、自我弛豫以及线性强度调制的脉冲频率特性。这项工作表明,三原子型MXene(例如VC)忆阻器可能为构建硬件神经形态计算系统提供一种有效的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/8623555/4d75662df308/nanomaterials-11-02860-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验