Suppr超能文献

用于基于忆阻器的神经形态系统的低压振荡神经元。

Low-Voltage Oscillatory Neurons for Memristor-Based Neuromorphic Systems.

作者信息

Hua Qilin, Wu Huaqiang, Gao Bin, Zhang Qingtian, Wu Wei, Li Yujia, Wang Xiaohu, Hu Weiguo, Qian He

机构信息

Institute of Microelectronics Tsinghua University Beijing 100084 China.

CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083 China.

出版信息

Glob Chall. 2019 Aug 7;3(11):1900015. doi: 10.1002/gch2.201900015. eCollection 2019 Nov.

Abstract

Neuromorphic systems consisting of artificial neurons and synapses can process complex information with high efficiency to overcome the bottleneck of von Neumann architecture. Artificial neurons are essentially required to possess functions such as leaky integrate-and-fire and output spike. However, previous reported artificial neurons typically have high operation voltage and large leakage current, leading to significant power consumption, which is contrary to the energy-efficient biological model. Here, an oscillatory neuron based on Ag filamentary threshold switching memristor (TS) that has a low operation voltage (<0.6 V) with ultralow power consumption (<1.8 µW) is presented. It can trigger neuronal functions, including leaky integrate-and-fire and threshold-driven spiking output, with high endurance (>10 cycles). Being connected to an external resistor or a resistive switching memristor (RS) as synaptic weight, the TS clearly demonstrates self-oscillation behavior once the input pulse voltage exceeds the threshold voltage. Meanwhile, the oscillation frequency is proportional to the input pulse voltage and the conductance of RS synapse, which can be used to integrate the weighted sum current. As an energy-efficient memristor-based spiking neural network, this combination of TS oscillatory neuron with RS synapse is further evaluated for image recognition achieving an accuracy of 79.2 ± 2.4% for CIFAR-10 subset.

摘要

由人工神经元和突触组成的神经形态系统能够高效处理复杂信息,以克服冯·诺依曼架构的瓶颈。人工神经元本质上需要具备诸如漏电积分发放和输出尖峰等功能。然而,先前报道的人工神经元通常具有高工作电压和大泄漏电流,导致显著的功耗,这与节能的生物模型相悖。在此,提出了一种基于银丝状阈值开关忆阻器(TS)的振荡神经元,其具有低工作电压(<0.6 V)和超低功耗(<1.8 μW)。它能够以高耐久性(>10个周期)触发神经元功能,包括漏电积分发放和阈值驱动的尖峰输出。当连接到外部电阻或作为突触权重的电阻开关忆阻器(RS)时,一旦输入脉冲电压超过阈值电压,TS就会清晰地表现出自振荡行为。同时,振荡频率与输入脉冲电压和RS突触的电导成正比,可用于对加权和电流进行积分。作为一种节能的基于忆阻器的脉冲神经网络,这种TS振荡神经元与RS突触的组合进一步用于图像识别评估,对于CIFAR-10子集实现了79.2±2.4%的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/463f/6827597/e8c28f157e71/GCH2-3-1900015-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验