Bykowska Ola, Gontier Camille, Sax Anne-Lene, Jia David W, Montero Milton Llera, Bird Alex D, Houghton Conor, Pfister Jean-Pascal, Costa Rui Ponte
Computational Neuroscience Unit, Department of Computer Science, SCEEM, Faculty of Engineering, University of Bristol, Bristol, United Kingdom.
Department of Physiology, University of Bern, Bern, Switzerland.
Front Synaptic Neurosci. 2019 Aug 20;11:21. doi: 10.3389/fnsyn.2019.00021. eCollection 2019.
Synaptic computation is believed to underlie many forms of animal behavior. A correct identification of synaptic transmission properties is thus crucial for a better understanding of how the brain processes information, stores memories and learns. Recently, a number of new statistical methods for inferring synaptic transmission parameters have been introduced. Here we review and contrast these developments, with a focus on methods aimed at inferring both synaptic release statistics and synaptic dynamics. Furthermore, based on recent proposals we discuss how such methods can be applied to data across different levels of investigation: from intracellular paired experiments to network-wide recordings. Overall, these developments open the window to reliably estimating synaptic parameters in behaving animals.
突触计算被认为是多种动物行为的基础。因此,正确识别突触传递特性对于更好地理解大脑如何处理信息、存储记忆和学习至关重要。最近,已经引入了许多用于推断突触传递参数的新统计方法。在这里,我们回顾并对比这些进展,重点关注旨在推断突触释放统计和突触动力学的方法。此外,基于最近的提议,我们讨论了如何将这些方法应用于不同研究层面的数据:从细胞内配对实验到全网络记录。总体而言,这些进展为在行为动物中可靠地估计突触参数打开了一扇窗。