Ali Syed Yunus, Saran Aditya, Prasad Ashok, Singh Abhyudai, Das Dibyendu
Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
School of Biomedical and Chemical Engineering, Colorado State University, Fort Collins, Colorado 80521, USA.
bioRxiv. 2025 Jun 8:2025.06.06.658238. doi: 10.1101/2025.06.06.658238.
There is a long history of using experimental and computational approaches to study noise in single-cell levels of mRNA and proteins. The noise originates from a myriad of factors: intrinsic processes of gene expression, partitioning errors during division, and extrinsic effects, such as, random cell-cycle times. Although theoretical methods are well developed to analytically understand full statistics of copy numbers for fixed or Erlang distributed cell cycle times, the general problem of random division times is still open. For any random (but uncorrelated) division time distribution, we present a method to address this challenging problem and obtain exact series representations of the copy number distributions in the cyclo-stationary state. We provide explicit cell age-specific and age-averaged results, and analyze the relative contribution to noise from intrinsic and extrinsic sources. Our analytical approach will aid the analysis of single-cell expression data and help in disentangling the impact of variability in division times.
使用实验和计算方法研究单细胞水平上mRNA和蛋白质的噪声已有很长的历史。这种噪声源于众多因素:基因表达的内在过程、分裂过程中的分配误差以及外在影响,例如随机的细胞周期时间。尽管理论方法已得到充分发展,可用于分析理解固定或埃尔朗分布的细胞周期时间下拷贝数的完整统计信息,但随机分裂时间的一般问题仍然悬而未决。对于任何随机(但不相关)的分裂时间分布,我们提出了一种方法来解决这一具有挑战性的问题,并获得循环平稳状态下拷贝数分布的精确级数表示。我们提供了明确的特定细胞年龄和年龄平均结果,并分析了内在和外在来源对噪声的相对贡献。我们的分析方法将有助于分析单细胞表达数据,并有助于理清分裂时间变异性的影响。