Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.
Department of Chemistry, Yale University, New Haven, Connecticut, USA.
J Biol Chem. 2024 Jul;300(7):107475. doi: 10.1016/j.jbc.2024.107475. Epub 2024 Jun 13.
Photosystem II (PSII) is the water-plastoquinone photo-oxidoreductase central to oxygenic photosynthesis. PSII has been extensively studied for its ability to catalyze light-driven water oxidation at a MnCaO cluster called the oxygen-evolving complex (OEC). Despite these efforts, the complete reaction mechanism for water oxidation by PSII is still heavily debated. Previous mutagenesis studies have investigated the roles of conserved amino acids, but these studies have lacked a direct structural basis that would allow for a more meaningful interpretation. Here, we report a 2.14-Å resolution cryo-EM structure of a PSII complex containing the substitution Asp170Glu on the D1 subunit. This mutation directly perturbs a bridging carboxylate ligand of the OEC, which alters the spectroscopic properties of the OEC without fully abolishing water oxidation. The structure reveals that the mutation shifts the position of the OEC within the active site without markedly distorting the MnCaO cluster metal-metal geometry, instead shifting the OEC as a rigid body. This shift disturbs the hydrogen-bonding network of structured waters near the OEC, causing disorder in the conserved water channels. This mutation-induced disorder appears consistent with previous FTIR spectroscopic data. We further show using quantum mechanics/molecular mechanics methods that the mutation-induced structural changes can affect the magnetic properties of the OEC by altering the axes of the Jahn-Teller distortion of the Mn(III) ion coordinated to D1-170. These results offer new perspectives on the conserved water channels, the rigid body property of the OEC, and the role of D1-Asp170 in the enzymatic water oxidation mechanism.
光系统 II(PSII)是产氧光合作用中水-质体醌光氧化还原酶的核心。由于其能够在称为放氧复合物(OEC)的 MnCaO 簇中催化光驱动的水氧化,因此 PSII 已经得到了广泛的研究。尽管进行了这些努力,但 PSII 水氧化的完整反应机制仍存在很大争议。以前的突变体研究已经研究了保守氨基酸的作用,但这些研究缺乏直接的结构基础,无法进行更有意义的解释。在这里,我们报告了一个含有 D1 亚基上取代的 Asp170Glu 的 PSII 复合物的 2.14 Å 分辨率冷冻电镜结构。该突变直接干扰了 OEC 的桥连羧酸盐配体,改变了 OEC 的光谱性质,而没有完全阻止水氧化。该结构表明,该突变会改变 OEC 在活性位点中的位置,而不会明显扭曲 MnCaO 簇的金属-金属几何形状,而是将 OEC 作为一个刚体移动。这种移位会扰乱 OEC 附近结构水的氢键网络,导致保守的水通道无序。这种突变诱导的无序与之前的 FTIR 光谱数据一致。我们进一步使用量子力学/分子力学方法表明,突变引起的结构变化可以通过改变与 D1-170 配位的 Mn(III)离子的 Jahn-Teller 扭曲的轴来影响 OEC 的磁性质。这些结果为保守的水通道、OEC 的刚体性质以及 D1-Asp170 在酶促水氧化机制中的作用提供了新的视角。