Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Photosynth Res. 2023 Jun;156(3):279-307. doi: 10.1007/s11120-022-00991-y. Epub 2023 Feb 24.
Photosynthetic water oxidation by Photosystem II (PSII) is a fascinating process because it sustains life on Earth and serves as a blue print for scalable synthetic catalysts required for renewable energy applications. The biophysical, computational, and structural description of this process, which started more than 50 years ago, has made tremendous progress over the past two decades, with its high-resolution crystal structures being available not only of the dark-stable state of PSII, but of all the semi-stable reaction intermediates and even some transient states. Here, we summarize the current knowledge on PSII with emphasis on the basic principles that govern the conversion of light energy to chemical energy in PSII, as well as on the illustration of the molecular structures that enable these reactions. The important remaining questions regarding the mechanism of biological water oxidation are highlighted, and one possible pathway for this fundamental reaction is described at a molecular level.
光合作用水氧化由光系统 II(PSII)进行,这是一个迷人的过程,因为它维持了地球上的生命,并为可再生能源应用所需的可扩展合成催化剂提供了蓝图。该过程的生物物理、计算和结构描述始于 50 多年前,在过去的二十年中取得了巨大的进展,不仅获得了 PSII 的暗稳定态的高分辨率晶体结构,还获得了所有半稳定反应中间体甚至一些瞬态态的高分辨率晶体结构。在这里,我们总结了 PSII 的现有知识,重点介绍了支配 PSII 中光能转化为化学能的基本原理,以及阐明了实现这些反应的分子结构。突出了关于生物水氧化机制的重要遗留问题,并在分子水平上描述了该基本反应的一种可能途径。