Suppr超能文献

利用典型的机器学习模型预测生物炭材料对 Cd(II)的吸附能力,以有效修复水环境污染。

Predicting Cd(II) adsorption capacity of biochar materials using typical machine learning models for effective remediation of aquatic environments.

机构信息

School of Chemistry and Materials Science, Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, Hunan 410128, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.

School of Chemistry and Materials Science, Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, Hunan 410128, China.

出版信息

Sci Total Environ. 2024 Sep 20;944:173955. doi: 10.1016/j.scitotenv.2024.173955. Epub 2024 Jun 13.

Abstract

The screening and design of "green" biochar materials with high adsorption capacity play a pivotal role in promoting the sustainable treatment of Cd(II)-containing wastewater. In this study, six typical machine learning (ML) models, namely Linear Regression, Random Forest, Gradient Boosting Decision Tree, CatBoost, K-Nearest Neighbors, and Backpropagation Neural Network, were employed to accurately predict the adsorption capacity of Cd(II) onto biochars. A large dataset with 1051 data points was generated using 21 input variables obtained from batch adsorption experiments, including preparation conditions for biochar (2 features), physical properties of biochar (4 features), chemical composition of biochar (9 features), and adsorption experiment conditions (6 features). The rigorous evaluation and comparison of the ML models revealed that the CatBoost model exhibited the highest test R value (0.971) and the lowest RMSE (20.54 mg/g), significantly outperforming all other models. The feature importance analysis using Shapley Additive Explanations (SHAP) indicated that biochar chemical compositions had the greatest impact on model predictions of adsorption capacity (42.2 %), followed by adsorption conditions (37.57 %), biochar physical characteristics (12.38 %), and preparation conditions (7.85 %). The optimal experimental conditions optimized by partial dependence plots (PDP) are as follows: as high Cd(II) concentration as possible, C(%) of 33 %, N(%) of 0.3 %, adsorption time of 600 min, pyrolysis time of 50 min, biochar dosage of less than 2 g/L, O(%) of 42 %, biochar pH value of 11.2, and DBE of 1.15. This study unveils novel insights into the adsorption of Cd(II) and provides a comprehensive reference for the sustainable engineering of biochars in Cd(II) wastewater treatment.

摘要

具有高吸附能力的“绿色”生物炭材料的筛选和设计在促进含 Cd(II)废水的可持续处理方面起着关键作用。在这项研究中,采用了六种典型的机器学习 (ML) 模型,即线性回归、随机森林、梯度提升决策树、CatBoost、K-最近邻和反向传播神经网络,以准确预测 Cd(II)在生物炭上的吸附能力。使用从批量吸附实验中获得的 21 个输入变量生成了一个包含 1051 个数据点的大型数据集,这些输入变量包括生物炭的制备条件(2 个特征)、生物炭的物理性质(4 个特征)、生物炭的化学成分(9 个特征)和吸附实验条件(6 个特征)。通过严格评估和比较 ML 模型,发现 CatBoost 模型表现出最高的测试 R 值(0.971)和最低的 RMSE(20.54mg/g),明显优于所有其他模型。使用 Shapley Additive Explanations (SHAP) 进行特征重要性分析表明,生物炭化学成分对模型预测吸附能力的影响最大(42.2%),其次是吸附条件(37.57%)、生物炭物理特性(12.38%)和制备条件(7.85%)。通过偏依赖图(PDP)优化的最佳实验条件如下:尽可能高的 Cd(II)浓度、C(%)为 33%、N(%)为 0.3%、吸附时间为 600min、热解时间为 50min、生物炭用量小于 2g/L、O(%)为 42%、生物炭 pH 值为 11.2、DBE 为 1.15。本研究揭示了 Cd(II)吸附的新见解,并为 Cd(II)废水处理中生物炭的可持续工程提供了全面的参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验