Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
School of International Engineering and Science, Jeonbuk National University, Jeonju, 54896, South Korea.
Comput Biol Med. 2024 Aug;178:108737. doi: 10.1016/j.compbiomed.2024.108737. Epub 2024 Jun 15.
High-affinity ligand peptides for ion channels are essential for controlling the flow of ions across the plasma membrane. These peptides are now being investigated as possible therapeutic possibilities for a variety of illnesses, including cancer and cardiovascular disease. So, the identification and interpretation of ligand peptide inhibitors to control ion flow across cells become pivotal for exploration. In this work, we developed an ensemble-based model, NaII-Pred, for the identification of sodium ion inhibitors. The ensemble model was trained, tested, and evaluated on three different datasets. The NaII-Pred method employs six different descriptors and a hybrid feature set in conjunction with five conventional machine learning classifiers to create 35 baseline models. Through an ensemble approach, the top five baseline models trained on the hybrid feature set were integrated to yield the final predictive model, NaII-Pred. Our proposed model, NaII-Pred, outperforms the baseline models and the current predictors on both datasets. We believe NaII-Pred will play a critical role in screening and identifying potential sodium ion inhibitors and will be an invaluable tool.
高亲和力配体肽对于控制离子跨质膜的流动至关重要。这些肽现在正在作为治疗多种疾病的潜在可能进行研究,包括癌症和心血管疾病。因此,识别和解释配体肽抑制剂以控制细胞内的离子流对于探索至关重要。在这项工作中,我们开发了一个基于集合的模型 NaII-Pred,用于识别钠离子抑制剂。该集合模型在三个不同的数据集上进行了训练、测试和评估。NaII-Pred 方法使用六个不同的描述符和一个混合特征集以及五个传统的机器学习分类器来创建 35 个基线模型。通过集成方法,在混合特征集上训练的前五名基线模型被集成以生成最终的预测模型 NaII-Pred。我们提出的模型 NaII-Pred 在两个数据集上均优于基线模型和当前的预测器。我们相信 NaII-Pred 将在筛选和识别潜在的钠离子抑制剂方面发挥关键作用,并且将是一个非常有价值的工具。