Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
School of International Engineering and Science, Jeonbuk National University, Jeonju, 54896, South Korea.
Biosystems. 2024 Mar;237:105177. doi: 10.1016/j.biosystems.2024.105177. Epub 2024 Mar 6.
The escalating global incidence of cancer poses significant health challenges, underscoring the need for innovative and more efficacious treatments. Cancer immunotherapy, a promising approach leveraging the body's immune system against cancer, emerges as a compelling solution. Consequently, the identification and characterization of tumor T-cell antigens (TTCAs) have become pivotal for exploration. In this manuscript, we introduce TTCA-IF, an integrative machine learning-based framework designed for TTCAs identification. TTCA-IF employs ten feature encoding types in conjunction with five conventional machine learning classifiers. To establish a robust foundation, these classifiers are trained, resulting in the creation of 150 baseline models. The outputs from these baseline models are then fed back into the five classifiers, generating their respective meta-models. Through an ensemble approach, the five meta-models are seamlessly integrated to yield the final predictive model, the TTCA-IF model. Our proposed model, TTCA-IF, surpasses both baseline models and existing predictors in performance. In a comparative analysis involving nine novel peptide sequences, TTCA-IF demonstrated exceptional accuracy by correctly identifying 8 out of 9 peptides as TTCAs. As a tool for screening and pinpointing potential TTCAs, we anticipate TTCA-IF to be invaluable in advancing cancer immunotherapy.
癌症在全球的发病率不断上升,给人类健康带来了巨大的挑战,这凸显了我们需要创新和更有效的治疗方法。癌症免疫疗法是一种利用人体免疫系统对抗癌症的有前途的方法,它是一种很有吸引力的解决方案。因此,鉴定和描述肿瘤 T 细胞抗原(TTCAs)已经成为探索的关键。在本文中,我们介绍了 TTCA-IF,这是一个基于集成机器学习的 TTCAs 鉴定框架。TTCA-IF 使用了十种特征编码类型和五种传统的机器学习分类器。为了建立一个强大的基础,我们对这些分类器进行了训练,从而创建了 150 个基准模型。然后,将这些基准模型的输出反馈到五个分类器中,生成各自的元模型。通过集成方法,将五个元模型无缝集成到最终的预测模型 TTCA-IF 模型中。我们提出的模型 TTCA-IF 在性能上超过了基准模型和现有的预测器。在涉及九个新肽序列的比较分析中,TTCA-IF 通过正确识别 9 个肽中的 8 个作为 TTCAs,表现出了出色的准确性。作为一种筛选和确定潜在 TTCAs 的工具,我们预计 TTCA-IF 将在推进癌症免疫疗法方面具有重要的价值。