Suppr超能文献

基于物理信息的神经网络在血流模型参数估计中的应用。

Physics-informed neural networks for parameter estimation in blood flow models.

机构信息

Department of Mechanical and Metallurgical Engineering, Pontificia Universidad Católica de Chile, Chile; Center of Biomedical Imaging, Pontificia Universidad Católica de Chile, Chile; Millennium Institute for Intelligent Healthcare Engineering (iHealth), Chile.

Department of Computer Science, Pontificia Universidad Católica de Chile, Chile; Institute for Mathematical and Computational Engineering, Pontificia Universidad Católica de Chile, Chile; Millennium Institute for Foundational Research on Data (IMFD), Chile.

出版信息

Comput Biol Med. 2024 Aug;178:108706. doi: 10.1016/j.compbiomed.2024.108706. Epub 2024 Jun 5.

Abstract

BACKGROUND

Physics-informed neural networks (PINNs) have emerged as a powerful tool for solving inverse problems, especially in cases where no complete information about the system is known and scatter measurements are available. This is especially useful in hemodynamics since the boundary information is often difficult to model, and high-quality blood flow measurements are generally hard to obtain.

METHODS

In this work, we use the PINNs methodology for estimating reduced-order model parameters and the full velocity field from scatter 2D noisy measurements in the aorta. Two different flow regimes, stationary and transient were studied.

RESULTS

We show robust and relatively accurate parameter estimations when using the method with simulated data, while the velocity reconstruction accuracy shows dependence on the measurement quality and the flow pattern complexity. Comparison with a Kalman filter approach shows similar results when the number of parameters to be estimated is low to medium. For a higher number of parameters, only PINNs were capable of achieving good results.

CONCLUSION

The method opens a door to deep-learning-driven methods in the simulations of complex coupled physical systems.

摘要

背景

物理信息神经网络 (PINN) 已成为解决反问题的有力工具,特别是在对系统缺乏完整信息且仅存在散射测量数据的情况下。这在血液动力学中尤其有用,因为边界信息通常难以建模,并且通常难以获得高质量的血流测量数据。

方法

在这项工作中,我们使用 PINN 方法从主动脉中的散射二维噪声测量数据中估计降阶模型参数和全速度场。研究了两种不同的流动状态,即定常流和瞬态流。

结果

我们展示了当使用模拟数据时,该方法能够实现稳健且相对准确的参数估计,而速度重建精度取决于测量质量和流动模式的复杂性。与卡尔曼滤波方法的比较表明,当要估计的参数数量较低到中等时,这两种方法的结果相似。对于更高数量的参数,只有 PINN 才能实现良好的结果。

结论

该方法为复杂耦合物理系统的仿真中的深度学习驱动方法开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验