Suppr超能文献

基于微状态的脑网络动力学区分颞叶癫痫患者:一种机器学习方法。

Microstate-based brain network dynamics distinguishing temporal lobe epilepsy patients: A machine learning approach.

机构信息

Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, PR China.

School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China.

出版信息

Neuroimage. 2024 Aug 1;296:120683. doi: 10.1016/j.neuroimage.2024.120683. Epub 2024 Jun 14.

Abstract

Temporal lobe epilepsy (TLE) stands as the predominant adult focal epilepsy syndrome, characterized by dysfunctional intrinsic brain dynamics. However, the precise mechanisms underlying seizures in these patients remain elusive. Our study encompassed 116 TLE patients compared with 51 healthy controls. Employing microstate analysis, we assessed brain dynamic disparities between TLE patients and healthy controls, as well as between drug-resistant epilepsy (DRE) and drug-sensitive epilepsy (DSE) patients. We constructed dynamic functional connectivity networks based on microstates and quantified their spatial and temporal variability. Utilizing these brain network features, we developed machine learning models to discriminate between TLE patients and healthy controls, and between DRE and DSE patients. Temporal dynamics in TLE patients exhibited significant acceleration compared to healthy controls, along with heightened synchronization and instability in brain networks. Moreover, DRE patients displayed notably lower spatial variability in certain parts of microstate B, E and F dynamic functional connectivity networks, while temporal variability in certain parts of microstate E and G dynamic functional connectivity networks was markedly higher in DRE patients compared to DSE patients. The machine learning model based on these spatiotemporal metrics effectively differentiated TLE patients from healthy controls and discerned DRE from DSE patients. The accelerated microstate dynamics and disrupted microstate sequences observed in TLE patients mirror highly unstable intrinsic brain dynamics, potentially underlying abnormal discharges. Additionally, the presence of highly synchronized and unstable activities in brain networks of DRE patients signifies the establishment of stable epileptogenic networks, contributing to the poor responsiveness to antiseizure medications. The model based on spatiotemporal metrics demonstrated robust predictive performance, accurately distinguishing both TLE patients from healthy controls and DRE patients from DSE patients.

摘要

颞叶癫痫(TLE)是主要的成人局灶性癫痫综合征,其特征是大脑内在功能失调。然而,这些患者癫痫发作的确切机制仍难以捉摸。我们的研究纳入了 116 名 TLE 患者和 51 名健康对照者。我们采用微状态分析方法,评估了 TLE 患者与健康对照组之间,以及耐药性癫痫(DRE)患者与敏感性癫痫(DSE)患者之间的大脑动态差异。我们基于微状态构建了动态功能连接网络,并量化了它们的空间和时间变异性。我们利用这些脑网络特征,开发了机器学习模型,以区分 TLE 患者与健康对照组,以及 DRE 与 DSE 患者。与健康对照组相比,TLE 患者的时间动态明显加快,大脑网络的同步性和不稳定性也增强。此外,DRE 患者的微状态 B、E 和 F 动态功能连接网络的某些部分的空间变异性明显降低,而 DRE 患者的微状态 E 和 G 动态功能连接网络的某些部分的时间变异性明显高于 DSE 患者。基于这些时空指标的机器学习模型有效地将 TLE 患者与健康对照组区分开来,并将 DRE 与 DSE 患者区分开来。TLE 患者中观察到的微状态动力学加速和微状态序列紊乱反映了高度不稳定的内在大脑动力学,可能是异常放电的基础。此外,DRE 患者大脑网络中存在高度同步和不稳定的活动,表明稳定的致痫网络的建立,导致对抗癫痫药物的反应不佳。基于时空指标的模型表现出强大的预测性能,能够准确地区分 TLE 患者与健康对照组,以及 DRE 患者与 DSE 患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验