Suppr超能文献

诱发共振神经活动的长期动力学可以通过一个具有空泡耗竭的计算模型来重现。

Evoked resonant neural activity long-term dynamics can be reproduced by a computational model with vesicle depletion.

机构信息

Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK; MRC Brain Networks Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.

MRC Brain Networks Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.

出版信息

Neurobiol Dis. 2024 Sep;199:106565. doi: 10.1016/j.nbd.2024.106565. Epub 2024 Jun 14.

Abstract

Subthalamic deep brain stimulation (DBS) robustly generates high-frequency oscillations known as evoked resonant neural activity (ERNA). Recently the importance of ERNA has been demonstrated through its ability to predict the optimal DBS contact in the subthalamic nucleus in patients with Parkinson's disease. However, the underlying mechanisms of ERNA are not well understood, and previous modelling efforts have not managed to reproduce the wealth of published data describing the dynamics of ERNA. Here, we aim to present a minimal model capable of reproducing the characteristics of the slow ERNA dynamics published to date. We make biophysically-motivated modifications to the Kuramoto model and fit its parameters to the slow dynamics of ERNA obtained from data. Our results demonstrate that it is possible to reproduce the slow dynamics of ERNA (over hundreds of seconds) with a single neuronal population, and, crucially, with vesicle depletion as one of the key mechanisms behind the ERNA frequency decay in our model. We further validate the proposed model against experimental data from Parkinson's disease patients, where it captures the variations in ERNA frequency and amplitude in response to variable stimulation frequency, amplitude, and to stimulation pulse bursting. We provide a series of predictions from the model that could be the subject of future studies for further validation.

摘要

丘脑底核深部脑刺激 (DBS) 会产生高频震荡,即诱发谐振神经活动 (ERNA)。最近,通过其在帕金森病患者中预测丘脑底核最佳 DBS 接触点的能力,证明了 ERNA 的重要性。然而,ERNA 的潜在机制尚不清楚,并且之前的建模工作未能重现描述 ERNA 动力学的大量已发表数据。在这里,我们旨在提出一个能够再现迄今为止发表的慢 ERNA 动力学特征的最小模型。我们对 Kuramoto 模型进行了基于生理的修改,并将其参数拟合到从数据中获得的慢 ERNA 动力学。我们的结果表明,使用单个神经元群体并以囊泡耗竭作为 ERNA 频率衰减背后的关键机制之一,有可能再现 ERNA 的慢动力学(数百秒)。我们还针对帕金森病患者的实验数据对提出的模型进行了验证,该模型能够捕捉到 ERNA 频率和幅度对刺激频率、幅度和刺激脉冲突发的变化的响应。我们从模型中提供了一系列预测,这些预测可能是未来进一步验证的研究主题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fade/11300885/91f326f5f82d/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验