Suppr超能文献

先进设计的交联剂通过基于羧甲基纤维素钠和聚赖氨酸的原位交联,实现了高性能硅基负极。

Advanced-design cross-linked binder enables high-performance silicon-based anodes through in-situ crosslinking based on sodium carboxymethyl cellulose and poly-lysine.

机构信息

Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China; Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Green Chemical Technology of Fujian Province University, Department of College of Ecology and Resource Engineering, Wuyi University, Wuyishan 354300, China.

Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China.

出版信息

Int J Biol Macromol. 2024 Aug;274(Pt 1):133050. doi: 10.1016/j.ijbiomac.2024.133050. Epub 2024 Jun 14.

Abstract

Practical employment of silicon (Si) electrodes in lithium-ion batteries (LIBs) is limited due to the severe volume changes suffered during charging-discharging process, causing serious capacity fading. Here, a composite polymer (CP-10) containing sodium carboxymethyl cellulose (CMC-Na) and poly-lysine (PL) is proposed for the binder of Si-based anodes, and a multifunctional strategy of "in-situ crosslinking" is achieved to alleviate the severe capacity degradation effectively. A cross-linked three-dimensional (3D) network is established through the strong hydrogen bonding interaction and reversible electrostatic interactions within CP-10, offering favorable mechanical tolerance for the extreme volume expansion of Si. Moreover, hydrogen bonding interaction along with ion-dipole interaction formed between CP-10 and Si surface enhance the bonding capability of Si-based anodes, promoting the maintenance of anodes' integrity. Consequently, over 800 cycles are achieved for the Si@CP-10 at 0.5C while maintaining a fixed discharge specific capacity of 1000 mAh g. Moreover, the Si/C@CP-10 can stably operate over 500 cycles with a capacity retention of 77.12 % at 1C. The prolonged cycling lifetime of Si/C and Si anodes suggests great potential for this strategy in promoting the implementation of high-capacity LIBs.

摘要

由于在充放电过程中遭受严重的体积变化,硅(Si)电极在锂离子电池(LIBs)中的实际应用受到限制,导致严重的容量衰减。在这里,提出了一种含有羧甲基纤维素钠(CMC-Na)和聚赖氨酸(PL)的复合聚合物(CP-10)作为 Si 基负极的粘结剂,并实现了一种“原位交联”的多功能策略,有效地缓解了严重的容量退化。通过 CP-10 内的强氢键相互作用和可逆静电相互作用,建立了交联的三维(3D)网络,为 Si 的极端体积膨胀提供了良好的机械耐受性。此外,CP-10 与 Si 表面之间形成的氢键相互作用和离子偶极相互作用增强了 Si 基负极的结合能力,促进了负极完整性的维持。因此,Si@CP-10 在 0.5C 时可实现超过 800 个循环,同时保持 1000 mAh g 的固定放电比容量。此外,Si/C@CP-10 在 1C 时可稳定运行超过 500 个循环,容量保持率为 77.12%。Si/C 和 Si 阳极的长循环寿命表明,该策略在促进高容量 LIBs 的实施方面具有巨大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验