Xiao Yupeng, Hao Xiaoqian, Li Tianle, Mao Yangyang, Zhu Tianjiao, Zang Jinqi, Li Yuqian, Wang Wenju
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
ACS Appl Mater Interfaces. 2024 Aug 7;16(31):41036-41047. doi: 10.1021/acsami.4c08710. Epub 2024 Jul 26.
The intrinsic volumetric stress during cycling is the main obstacle for developing Si-based materials as high-energy-density lithium-ion battery anodes. Elastic binders have been demonstrated as an efficient approach to alleviate the stress of Si. Herein, we design a tough 3D hard/soft polymeric network (LPTS) using lithiated poly(acrylic acid), silk sericin, and highly branched tannic acid. Covalent cross-linking provides a robust mechanical strength to endure the large stress. The formed multiple hydrogen bonds with bonding energies between 3.46 and 25 kcal mol can effectively dissipate the stress through sequential hydrogen bond disassociation. The multifunctional LPTS binder maintains the integrity of the Si-based electrodes during repeated discharging/charging. Additionally, Li can be transferred via a Li-conducting group (-COOLi), thereby enhancing the ionic conductivity of electrodes. Consequently, the Si/LPTS electrode exhibits an improved initial Coulombic efficiency and excellent durability over 400 cycles. Meanwhile, this binder is also suitable for Si-C anodes, enabling stable cycling at a high areal capacity >3.6 mAh cm and delivering 72.2% capacity retention for the LFP||Si-C/LPTS full cell after 200 cycles. This study provides insight into developing efficient Si-based binders that are facile and low-cost for next-generation high-energy-density systems.
循环过程中的本征体积应力是将硅基材料开发为高能量密度锂离子电池负极的主要障碍。弹性粘结剂已被证明是缓解硅应力的有效方法。在此,我们使用锂化聚丙烯酸、丝素蛋白和高度支化的单宁酸设计了一种坚韧的三维硬/软聚合物网络(LPTS)。共价交联提供了强大的机械强度以承受大应力。形成的多个氢键的键能在3.46至25千卡/摩尔之间,可通过顺序氢键解离有效地消散应力。多功能LPTS粘结剂在反复充放电过程中保持硅基电极的完整性。此外,锂可以通过锂传导基团(-COOLi)转移,从而提高电极的离子电导率。因此,Si/LPTS电极表现出改善的初始库仑效率和超过400次循环的优异耐久性。同时,这种粘结剂也适用于Si-C负极,能够在高面积容量>3.6 mAh/cm²下实现稳定循环,并在200次循环后使LFP||Si-C/LPTS全电池的容量保持率达到72.2%。这项研究为开发高效、简便且低成本的下一代高能量密度系统的硅基粘结剂提供了思路。