Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA.
Ear Hear. 2024;45(6):1406-1417. doi: 10.1097/AUD.0000000000001528. Epub 2024 Jun 17.
Modern cochlear implants (CIs) use varying-length electrode arrays inserted at varying insertion angles within variably sized cochleae. Thus, there exists an opportunity to enhance CI performance, particularly in postlinguistic adults, by optimizing the frequency-to-place allocation for electrical stimulation, thereby minimizing the need for central adaptation and plasticity. There has been interest in applying Greenwood or Stakhovskaya et al. function (describing the tonotopic map) to postoperative imaging of electrodes to improve frequency allocation and place coding. Acoustically-evoked electrocochleography (ECochG) allows for electrophysiologic best-frequency (BF) determination of CI electrodes and the potential for creating a personalized frequency allocation function. The objective of this study was to investigate the correlation between early speech-perception performance and frequency-to-place mismatch.
This retrospective study included 50 patients who received a slim perimodiolar electrode array. Following electrode insertion, five acoustic pure-tone stimuli ranging from 0.25 to 2 kHz were presented, and electrophysiological measurements were collected across all 22 electrode contacts. Cochlear microphonic tuning curves were subsequently generated for each stimulus frequency to ascertain the BF electrode or the location corresponding to the maximum response amplitude. Subsequently, we calculated the difference between the stimulus frequency and the patient's CI map's actual frequency allocation at each BF electrode, reflecting the frequency-to-place mismatch. BF electrocochleography-total response (BF-ECochG-TR), a measure of cochlear health, was also evaluated for each subject to control for the known impact of this measure on performance.
Our findings showed a moderate correlation ( r = 0.51; 95% confidence interval: 0.23 to 0.76) between the cumulative frequency-to-place mismatch, as determined using the ECochG-derived BF map (utilizing 500, 1000, and 2000 Hz), and 3-month performance on consonant-nucleus-consonant words (N = 38). Larger positive mismatches, shifted basal from the BF map, led to enhanced speech perception. Incorporating BF-ECochG-TR, total mismatch, and their interaction in a multivariate model explained 62% of the variance in consonant-nucleus-consonant word scores at 3 months. BF-ECochG-TR as a standalone predictor tended to overestimate performance for subjects with larger negative total mismatches and underestimated the performance for those with larger positive total mismatches. Neither cochlear diameter, number of cochlear turns, nor apical insertion angle accounted for the variability in total mismatch.
Comparison of ECochG-BF derived tonotopic electrode maps to the frequency allocation tables reveals substantial mismatch, explaining 26.0% of the variability in CI performance in quiet. Closer examination of the mismatch shows that basally shifted maps at high frequencies demonstrate superior performance at 3 months compared with those with apically shifted maps (toward Greenwood and Stakhovskaya et al.). The implications of these results suggest that electrophysiological-based frequency reallocation might lead to enhanced speech-perception performance, especially when compared with conventional manufacturer maps or anatomic-based mapping strategies. Future research, exploring the prospective use of ECochG-based mapping techniques for frequency allocation is underway.
现代人工耳蜗(CI)使用不同长度的电极阵列,以不同的插入角度插入到大小不同的耳蜗中。因此,通过优化电刺激的频率与位置分配,可以提高 CI 的性能,特别是对于语言后成年人,可以减少对中枢适应和可塑性的需求。人们一直有兴趣将 Greenwood 或 Stakhovskaya 等人的函数(描述音调图)应用于术后电极成像,以改善频率分配和位置编码。听诱发的电 Cochleography(ECochG)允许确定 CI 电极的电生理最佳频率(BF),并有可能创建个性化的频率分配函数。本研究的目的是研究早期言语感知性能与频率与位置不匹配之间的关系。
本回顾性研究纳入了 50 名接受 slim periModiolar 电极阵列的患者。电极插入后,呈现 5 个从 0.25 到 2 kHz 的纯音刺激,在所有 22 个电极触点上收集电生理测量值。随后,为每个刺激频率生成耳蜗微音调谐曲线,以确定 BF 电极或对应于最大响应幅度的位置。随后,我们计算了每个 BF 电极上刺激频率与患者 CI 图谱实际频率分配之间的差异,反映了频率与位置的不匹配。还评估了每个受试者的 BF 电 Cochleography-总反应(BF-ECochG-TR),这是一种耳蜗健康的衡量标准,以控制这一衡量标准对性能的已知影响。
我们的研究结果表明,使用 ECochG 衍生的 BF 图谱(使用 500、1000 和 2000 Hz)确定的累积频率与位置不匹配与 3 个月时的辅音-核-辅音词表现之间存在中度相关性( r = 0.51;95%置信区间:0.23 至 0.76)。较大的正偏差,从 BF 图谱基底偏移,导致言语感知增强。在多元模型中纳入 BF-ECochG-TR、总偏差及其相互作用,可解释 3 个月时辅音-核-辅音词得分的 62%的方差。BF-ECochG-TR 作为独立预测因子,对于具有较大负总偏差的受试者,其表现往往过高,而对于具有较大正总偏差的受试者,其表现往往过低。耳蜗直径、耳蜗匝数或尖端插入角度均不能解释总偏差的变异性。
将 ECochG-BF 衍生的音调电极图谱与频率分配表进行比较,发现存在显著的不匹配,这解释了安静状态下 CI 性能变化的 26.0%。对不匹配的更仔细检查表明,与尖端移位的图谱相比,高频基底移位的图谱在 3 个月时表现更好(与 Greenwood 和 Stakhovskaya 等人相比)。这些结果表明,基于电生理的频率重新分配可能会导致言语感知性能的提高,尤其是与传统制造商图谱或基于解剖学的映射策略相比。目前正在进行探索使用基于 ECochG 的映射技术进行频率分配的前瞻性研究。