Suppr超能文献

金属有机框架负载的低核簇催化剂用于将二氧化碳高效选择性电还原为乙醇

Metal-Organic Framework Supported Low-Nuclearity Cluster Catalysts for Highly Selective Carbon Dioxide Electroreduction to Ethanol.

作者信息

Shao Bing, Huang Du, Huang Rui-Kang, He Xing-Lu, Luo Yan, Xiang Yi-Lei, Jiang Lin-Bin, Dong Min, Li Shixiong, Zhang Zhong, Huang Jin

机构信息

Pharmaceutical College, Guangxi Medical University, Nanning, 530021, P. R. China.

Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2024 Nov 4;63(45):e202409270. doi: 10.1002/anie.202409270. Epub 2024 Jul 31.

Abstract

It is still a great challenge to achieve high selectivity of ethanol in CO electroreduction reactions (CORR) because of the similar reduction potentials and lower energy barrier of possible other C products. Here, we report a MOF-based supported low-nuclearity cluster catalysts (LNCCs), synthesized by electrochemical reduction of three-dimensional (3D) microporous Cu-based MOF, that achieves a single-product Faradaic efficiency (FE) of 82.5 % at -1.0 V (versus the reversible hydrogen electrode) corresponding to the effective current density is 8.66 mA cm. By investigating the relationship between the species of reduction products and the types of catalytic sites, it is confirmed that the multi-site synergism of Cu LNCCs can increase the C-C coupling effect, and thus achieve high FE of CO-to-ethanol. In addition, density functional theory (DFT) calculation and operando attenuated total reflectance surface-enhanced infrared absorption spectroscopy further confirmed the reaction path and mechanism of CO-to-EtOH.

摘要

在CO电还原反应(CORR)中实现乙醇的高选择性仍然是一个巨大的挑战,因为可能的其他C产物具有相似的还原电位和较低的能垒。在此,我们报道了一种基于MOF的负载型低核簇催化剂(LNCCs),通过电化学还原三维(3D)微孔铜基MOF合成,在-1.0 V(相对于可逆氢电极)下实现了单一产物法拉第效率(FE)为82.5%,对应有效电流密度为8.66 mA cm。通过研究还原产物种类与催化位点类型之间的关系,证实了Cu LNCCs的多位点协同作用可以增强C-C偶联效应,从而实现从CO到乙醇的高FE。此外,密度泛函理论(DFT)计算和原位衰减全反射表面增强红外吸收光谱进一步证实了从CO到EtOH的反应路径和机理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验