文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Progress in Cu-Based Catalyst Design for Sustained Electrocatalytic CO to C Conversion.

作者信息

Li Dan, Liu Jinyuan, Wang Bin, Huang Chao, Chu Paul K

机构信息

Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.

出版信息

Adv Sci (Weinh). 2025 Apr;12(13):e2416597. doi: 10.1002/advs.202416597. Epub 2025 Feb 27.


DOI:10.1002/advs.202416597
PMID:40013974
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11967780/
Abstract

The electrocatalytic conversion of CO into valuable multi-carbon (C) products using Cu-based catalysts has attracted significant attention. This review provides a comprehensive overview of recent advances in Cu-based catalyst design to improve C selectivity and operational stability. It begins with an analysis of the fundamental reaction pathways for C formation, encompassing both established and emerging mechanisms, which offer critical insights for catalyst design. In situ techniques, essential for validating these pathways by real-time observation of intermediates and material evolution, are also introduced. A key focus of this review is placed on how to enhance C selectivity through intermediates manipulation, particularly emphasizing catalytic site construction to promote C─C coupling via increasing CO coverage and optimizing protonation. Additionally, the challenge of maintaining catalytic activity under reaction conditions is discussed, highlighting the reduction of active charged Cu species and materials reconstruction as major obstacles. To address these, the review describes recent strategies to preserve active sites and control materials evolution, including novel catalyst design and the utilization and mitigation of reconstruction. By presenting these developments and the challenges ahead, this review aims to guide future materials design for CO conversion.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/b1d43952d46e/ADVS-12-2416597-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/75f437ec3a01/ADVS-12-2416597-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/637c6a1c2ae4/ADVS-12-2416597-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/52600ba262bc/ADVS-12-2416597-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/68c722393a94/ADVS-12-2416597-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/797a3f15fc1e/ADVS-12-2416597-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/3fcd87871280/ADVS-12-2416597-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/7e8e9f26dfee/ADVS-12-2416597-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/307caac0ae97/ADVS-12-2416597-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/726006dd24a1/ADVS-12-2416597-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/da5ca3d38517/ADVS-12-2416597-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/7ec3cd3b3b0b/ADVS-12-2416597-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/f5e8a5ee150c/ADVS-12-2416597-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/262db24de46c/ADVS-12-2416597-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/90ea1710ee1b/ADVS-12-2416597-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/e87759d7deda/ADVS-12-2416597-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/bbe8c55e101d/ADVS-12-2416597-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/42c3a0187435/ADVS-12-2416597-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/830b51af505a/ADVS-12-2416597-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/7d74a739fec3/ADVS-12-2416597-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/47d5bc59e3db/ADVS-12-2416597-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/b1d43952d46e/ADVS-12-2416597-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/75f437ec3a01/ADVS-12-2416597-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/637c6a1c2ae4/ADVS-12-2416597-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/52600ba262bc/ADVS-12-2416597-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/68c722393a94/ADVS-12-2416597-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/797a3f15fc1e/ADVS-12-2416597-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/3fcd87871280/ADVS-12-2416597-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/7e8e9f26dfee/ADVS-12-2416597-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/307caac0ae97/ADVS-12-2416597-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/726006dd24a1/ADVS-12-2416597-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/da5ca3d38517/ADVS-12-2416597-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/7ec3cd3b3b0b/ADVS-12-2416597-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/f5e8a5ee150c/ADVS-12-2416597-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/262db24de46c/ADVS-12-2416597-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/90ea1710ee1b/ADVS-12-2416597-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/e87759d7deda/ADVS-12-2416597-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/bbe8c55e101d/ADVS-12-2416597-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/42c3a0187435/ADVS-12-2416597-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/830b51af505a/ADVS-12-2416597-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/7d74a739fec3/ADVS-12-2416597-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/47d5bc59e3db/ADVS-12-2416597-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7106/11967780/b1d43952d46e/ADVS-12-2416597-g005.jpg

相似文献

[1]
Progress in Cu-Based Catalyst Design for Sustained Electrocatalytic CO to C Conversion.

Adv Sci (Weinh). 2025-4

[2]
Cu-Based Materials for Enhanced C Product Selectivity in Photo-/Electro-Catalytic CO Reduction: Challenges and Prospects.

Nanomicro Lett. 2024-1-4

[3]
Recent advances and developments in solar-driven photothermal catalytic CO reduction into multicarbon (C) products.

Chem Sci. 2025-2-15

[4]
CO Conversion to Alcohols over Cu/ZnO Catalysts: Prospective Synergies between Electrocatalytic and Thermocatalytic Routes.

ACS Appl Mater Interfaces. 2022-1-12

[5]
Rational Design of Local Reaction Environment for Electrocatalytic Conversion of CO into Multicarbon Products.

Angew Chem Int Ed Engl. 2024-6-3

[6]
In Situ Electropolymerizing Toward EP-CoP/Cu Tandem Catalyst for Enhanced Electrochemical CO-to-Ethylene Conversion.

Adv Sci (Weinh). 2024-9

[7]
Electrocatalytic CO Reduction to C Products via Enhanced C─C Coupling Over Cu-based Catalysts: Dynamic Reaction and Regulation Mechanism.

Small. 2025-5

[8]
Tandem Electroreduction of CO to C2+ Products Based on M-SACs/Cu Catalysts.

Chemistry. 2025-1-14

[9]
constructed Cu/CuNC interfaces for low-overpotential reduction of CO to ethanol.

Natl Sci Rev. 2022-11-3

[10]
Selectivity Control by Relay Catalysis in CO and CO Hydrogenation to Multicarbon Compounds.

Acc Chem Res. 2024-3-5

本文引用的文献

[1]
Large Dipole Moment Enhanced CO Adsorption on Copper Surface: Achieving 68.9% Catalytic Ethylene Faradaic Efficiency at 1.0 A cm.

Adv Mater. 2025-2

[2]
Key intermediates and Cu active sites for CO electroreduction to ethylene and ethanol.

Nat Energy. 2024

[3]
Switching CO-to-Acetate Electroreduction on Cu Atomic Ensembles.

J Am Chem Soc. 2025-1-8

[4]
Regulating Interfacial Hydrogen-Bonding Networks by Implanting Cu Sites with Perfluorooctane to Accelerate CO Electroreduction to Ethanol.

Angew Chem Int Ed Engl. 2025-2-3

[5]
Direct low concentration CO electroreduction to multicarbon products via rate-determining step tuning.

Nat Commun. 2024-11-29

[6]
Intermediate-regulated dynamic restructuring at Ag-Cu biphasic interface enables selective CO electroreduction to C fuels.

Nat Commun. 2024-11-28

[7]
Manipulating C-C coupling pathway in electrochemical CO reduction for selective ethylene and ethanol production over single-atom alloy catalyst.

Nat Commun. 2024-11-26

[8]
Ce/Ce Ion Redox Shuttle Stabilized Cu for Efficient CO Electroreduction to CH.

Angew Chem Int Ed Engl. 2025-2-10

[9]
Fabrication of Ultrahigh-Loading Dual Copper Sites in Nitrogen-Doped Porous Carbons Boosting Electroreduction of CO to CH Under Neutral Conditions.

Adv Mater. 2025-1

[10]
Roles of copper(I) in water-promoted CO electrolysis to multi-carbon compounds.

Nat Commun. 2024-11-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索