Suppr超能文献

2023年在阿拉加茨记录的极端雷暴地面增强数据集。

Dataset on extreme thunderstorm ground enhancements registered on Aragats in 2023.

作者信息

Chilingarian A, Karapetyan T, Sargsyan B, Aslanyan D, Chilingaryan S

机构信息

Alikhanyan National Laboratory (Yerevan Physics Institute), Yerevan 0036, Armenia.

Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz, 176344 Eggenstein-Leopoldshafen, Germany.

出版信息

Data Brief. 2024 May 25;54:110554. doi: 10.1016/j.dib.2024.110554. eCollection 2024 Jun.

Abstract

To advance high-energy atmospheric physics, studying atmospheric electric fields (AEF) and cosmic ray fluxes as an interconnected system is crucial. At Mt. Argats, simultaneous measurements of particle fluxes, electric fields, weather conditions, and lightning locations have significantly enhanced the validation of models that describe the charge structures of thunderclouds and the mechanics of internal electron accelerators. In 2023, observations of the five largest thunderstorm ground enhancements (TGEs) revealed electric fields exceeding 2.0 kV/cm at elevations just tens of meters above ground-potentially hazardous to rockets and aircraft during launch and charging operations. Utilizing simple yet effective monitoring equipment developed at Aragats, we can mitigate the risks posed by these high-intensity fields. The Mendeley dataset, comprising various measured parameters during thunderstorm activities, enables researchers to perform advanced correlation analysis and uncover complex relationships between these atmospheric phenomena. This study underscores the critical importance of integrated atmospheric studies for ensuring the safety of high-altitude operations and advancing atmospheric science.

摘要

为推动高能大气物理学发展,将大气电场(AEF)和宇宙射线通量作为一个相互关联的系统进行研究至关重要。在阿尔加茨山,对粒子通量、电场、天气状况和闪电位置的同步测量显著增强了对描述雷暴电荷结构和内部电子加速器机制的模型的验证。2023年,对五次最大的雷暴地面增强(TGE)的观测显示,在距地面仅几十米的高度,电场超过2.0 kV/cm,这在发射和充电操作期间对火箭和飞机可能构成危险。利用在阿尔加茨开发的简单而有效的监测设备,我们可以减轻这些高强度场带来的风险。门捷列夫数据集包含雷暴活动期间的各种测量参数,使研究人员能够进行高级相关性分析,并揭示这些大气现象之间的复杂关系。这项研究强调了综合大气研究对于确保高空作业安全和推动大气科学发展的至关重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e46b/11180300/223c425e3a01/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验