Sun Shengli, Wang Geng, Zhang Binyao, Wang Fei, Wu Wei
Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing, China.
Front Physiol. 2024 May 31;15:1373103. doi: 10.3389/fphys.2024.1373103. eCollection 2024.
The purpose of this study was to evaluate the methodological comparison of reticulocytes by using the intelligent learning system Faster R-CNN, a set of reticulocyte image detection systems developed using deep neural networks.
We selected 59 EDTA-K2 anticoagulated whole blood samples and calculated the RET% using seven different Sysmex XN full-automatic hematology analyzers with Faster R-CNN in the laboratory. We compared and evaluated the methods and statistically analyzed the correlation between the various test results.
The results indicated a high degree of consistency between the seven Sysmex XN full-automatic hematology analyzers and Faster R-CNN in detecting RET%. The correlation coefficients were 0.987, 0.984, 0.986, 0.987, 0.987, 0.988, and 0.986, respectively.
We found that the Sysmex XN full-automatic hematology analyzers in our laboratory using the Faster R-CNN system met the requirements of the methodological comparison of reticulocyte detection and this intelligent learning system can be a useful clinical tool.
本研究旨在评估使用智能学习系统Faster R-CNN(一种利用深度神经网络开发的网织红细胞图像检测系统)对网织红细胞进行方法学比较的情况。
我们选取了59份EDTA-K2抗凝全血样本,并在实验室中使用7台不同的Sysmex XN全自动血液分析仪结合Faster R-CNN计算RET%。我们对这些方法进行了比较和评估,并对各项检测结果之间的相关性进行了统计学分析。
结果表明,7台Sysmex XN全自动血液分析仪与Faster R-CNN在检测RET%方面具有高度一致性。相关系数分别为0.987、0.984、0.986、0.987、0.987、0.988和0.986。
我们发现,我们实验室中使用Faster R-CNN系统的Sysmex XN全自动血液分析仪符合网织红细胞检测方法学比较的要求,并且这种智能学习系统可以成为一种有用的临床工具。