Suppr超能文献

一种新的复发性妊娠丢失预后模型:甲状腺和血栓弹力描记参数评估。

A new prognostic model for recurrent pregnancy loss: assessment of thyroid and thromboelastograph parameters.

机构信息

Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, China.

出版信息

Front Endocrinol (Lausanne). 2024 May 30;15:1415786. doi: 10.3389/fendo.2024.1415786. eCollection 2024.

Abstract

OBJECTIVE

This study aimed to identify predictors associated with thyroid function and thromboelastograph (TEG) examination parameters and establish a nomogram for predicting the risk of subsequent pregnancy loss in recurrent pregnancy loss (RPL).

METHODS

In this retrospective study, we analyzed the medical records of 575 RPL patients treated at Lanzhou University Second Hospital, China, between September 2020 and December 2022, as a training cohort. We also included 272 RPL patients from Ruian People's Hospital between January 2020 and July 2022 as external validation cohort. Predictors included pre-pregnancy thyroid function and TEG examination parameters. The study outcome was pregnancy loss before 24 weeks of gestation. Variable selection was performed using least absolute shrinkage and selection operator regression and stepwise regression analyses, and the prediction model was developed using multivariable logistic regression. The study evaluated the model's performance using the area under the curve (AUC), calibration curve, and decision curve analysis. Additionally, dynamic and static nomograms were constructed to provide a visual representation of the models.

RESULTS

The predictors used to develop the model were body mass index, previous pregnancy losses, triiodothyronine, free thyroxine, thyroid stimulating hormone, lysis at 30 minutes, and estimated percent lysis which were determined by the multivariable logistic regression with the minimum Akaike information criterion of 605.1. The model demonstrated good discrimination with an AUC of 0.767 (95%CI 0.725-0.808), and the Hosmer-Lemeshow test indicated good fitness of the predicting variables with a value of 0.491. Identically, external validation confirmed that the model exhibited good performance with an AUC of 0.738. Moreover, the clinical decision curve showed a positive net benefit in the prediction model. Meanwhile, the web version we created was easy to use. The risk stratification indicated that high-risk patients with a risk score >147.9 had a higher chance of pregnancy loss (OR=6.05, 95%CI 4.09-8.97).

CONCLUSIONS

This nomogram well-predicted the risk of future pregnancy loss in RPL and can be used by clinicians to identify high-risk patients and provide a reference for pregnancy management of RPL.

摘要

目的

本研究旨在确定与甲状腺功能和血栓弹力图(TEG)检查参数相关的预测因素,并建立复发性妊娠丢失(RPL)患者后续妊娠丢失风险的预测模型。

方法

本回顾性研究分析了 2020 年 9 月至 2022 年 12 月在中国兰州大学第二医院治疗的 575 例 RPL 患者的病历(训练队列),并纳入了 2020 年 1 月至 2022 年 7 月瑞安市人民医院的 272 例 RPL 患者作为外部验证队列。预测因素包括孕前甲状腺功能和 TEG 检查参数。研究结果为妊娠 24 周前流产。使用最小绝对收缩和选择算子回归和逐步回归分析进行变量选择,使用多变量逻辑回归建立预测模型。使用曲线下面积(AUC)、校准曲线和决策曲线分析评估模型性能。此外,还构建了动态和静态列线图,以提供模型的直观表示。

结果

用于建立模型的预测因素是体重指数、既往妊娠丢失、三碘甲状腺原氨酸、游离甲状腺素、促甲状腺激素、30 分钟时的溶解和估计的溶解百分比,这些因素是通过最小 Akaike 信息准则为 605.1 的多变量逻辑回归确定的。该模型具有良好的区分能力,AUC 为 0.767(95%CI 0.725-0.808),Hosmer-Lemeshow 检验表明预测变量的拟合度良好, 值为 0.491。同样,外部验证证实该模型表现良好,AUC 为 0.738。此外,临床决策曲线显示预测模型具有积极的净获益。同时,我们创建的网络版本易于使用。风险分层表明,风险评分>147.9 的高危患者妊娠丢失的可能性更高(OR=6.05,95%CI 4.09-8.97)。

结论

该列线图很好地预测了 RPL 患者未来妊娠丢失的风险,临床医生可以使用它来识别高风险患者,并为 RPL 的妊娠管理提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1845/11177760/ceb584a9f54d/fendo-15-1415786-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验