Suppr超能文献

复发性流产妊娠结局的风险预测模型:一项叙述性系统综述

Risk prediction models for pregnancy outcomes in recurrent pregnancy loss: a narrative systematic review.

作者信息

Jian Qiliang, Mu Fangxiang, Wang Kexin, Wang Fang

机构信息

Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, China.

出版信息

Front Endocrinol (Lausanne). 2025 May 29;16:1582156. doi: 10.3389/fendo.2025.1582156. eCollection 2025.

Abstract

OBJECTIVE

Recurrent pregnancy loss (RPL) is a significant clinical challenge, with many cases remaining unexplained, and existing risk prediction models often lacking objective evaluation. This study aims to systematically review and evaluate the published risk prediction models for pregnancy outcomes in RPL.

METHODS

Literature search was conducted in August 2024 using PubMed, Embase, Web of Science, CNKI, and CMAJ databases to identify studies that reported the development and/or validation of clinical prediction models for RPL pregnancy outcomes. Pregnancy outcomes included pregnancy loss, ongoing pregnancy, and live birth. Data were extracted using the CHARMS checklist. Risk of bias and applicability were evaluated with PROBAST.

RESULTS

A total of 1,112 records were identified, with 15 studies ultimately included, encompassing 22 risk prediction models for evaluating RPL patients' pregnancy outcomes. The majority were retrospective cohort studies (13/15), and logistic regression was the predominant modeling method (14/15). Sample sizes ranged from 85 to 789, with the number of predictors per model varying from 2 to 18 (median=5). In total, 65 distinct predictors were identified, including five categories: patient-related, imaging-related, thrombophilia-related, metabolic/endocrinologic, and immunological factors, most frequently maternal age (n=10) and number of previous pregnancy losses (n=9). Among the 20 models that reported discriminative performance by the area under the receiver operating characteristics (ROC) curve (AUC), 13 achieved AUC above 0.80 (range: 0.809-0.97). Notably, 7 studies did not perform any form of validation, and only 3 studies conducted external validation. Despite the models reported a good predictive performance, they were all appraised to have high risk of bias in applicability due to methodological deficiencies.

CONCLUSION

The findings suggest that current risk prediction models for RPL pregnancy outcomes have a high risk of bias in clinical applications, primarily due to methodological flaws in development and validation processes. Future research should focus on data quality, sample diversity, and model transparency to ensure broad applicability across different populations, providing more reliable and effective tools for clinical practice.

SYSTEMATIC REVIEW EEGISTRATION

https://www.crd.york.ac.uk/PROSPERO/view/CRD42024570481, identifier CRD42024570481.

摘要

目的

复发性流产(RPL)是一项重大的临床挑战,许多病例病因不明,且现有的风险预测模型往往缺乏客观评估。本研究旨在系统回顾和评估已发表的RPL妊娠结局风险预测模型。

方法

于2024年8月使用PubMed、Embase、Web of Science、中国知网和《加拿大医学协会杂志》数据库进行文献检索,以识别报告RPL妊娠结局临床预测模型开发和/或验证情况的研究。妊娠结局包括流产、持续妊娠和活产。使用CHARM清单提取数据。采用PROBAST评估偏倚风险和适用性。

结果

共识别出1112条记录,最终纳入15项研究,其中包括22个用于评估RPL患者妊娠结局的风险预测模型。大多数是回顾性队列研究(13/15),逻辑回归是主要的建模方法(14/15)。样本量从85到789不等,每个模型的预测变量数量从2到18个不等(中位数=5)。总共识别出65个不同的预测变量,包括五类:患者相关、影像学相关、血栓形成倾向相关、代谢/内分泌和免疫因素,最常见的是母亲年龄(n=10)和既往流产次数(n=9)。在20个通过受试者操作特征曲线(ROC)下面积(AUC)报告判别性能的模型中,13个模型的AUC高于0.80(范围:0.809 - 0.97)。值得注意的是,7项研究未进行任何形式的验证,只有3项研究进行了外部验证。尽管这些模型报告了良好的预测性能,但由于方法学缺陷,它们在适用性方面均被评估为具有较高的偏倚风险。

结论

研究结果表明,目前用于RPL妊娠结局的风险预测模型在临床应用中存在较高的偏倚风险,主要原因在于开发和验证过程中的方法学缺陷。未来的研究应关注数据质量、样本多样性和模型透明度,以确保在不同人群中具有广泛的适用性,为临床实践提供更可靠、有效的工具。

系统评价注册

https://www.crd.york.ac.uk/PROSPERO/view/CRD42024570481,标识符CRD42024570481。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7d1/12158742/75df1520561c/fendo-16-1582156-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验