Suppr超能文献

利用基因组数据预测物种入侵性:基因组偏移与定殖概率有关吗?

Predicting species invasiveness with genomic data: Is genomic offset related to establishment probability?

作者信息

Camus Louise, Gautier Mathieu, Boitard Simon

机构信息

CBGP, INRAE, CIRAD, IRD, L'institut Agro, Université de Montpellier Montpellier France.

出版信息

Evol Appl. 2024 Jun 14;17(6):e13709. doi: 10.1111/eva.13709. eCollection 2024 Jun.

Abstract

Predicting the risk of establishment and spread of populations outside their native range represents a major challenge in evolutionary biology. Various methods have recently been developed to estimate population (mal)adaptation to a new environment with genomic data via so-called Genomic Offset (GO) statistics. These approaches are particularly promising for studying invasive species but have still rarely been used in this context. Here, we evaluated the relationship between GO and the establishment probability of a population in a new environment using both in silico and empirical data. First, we designed invasion simulations to evaluate the ability to predict establishment probability of two GO computation methods (Geometric GO and Gradient Forest) under several conditions. Additionally, we aimed to evaluate the interpretability of absolute Geometric GO values, which theoretically represent the adaptive genetic distance between populations from distinct environments. Second, utilizing public empirical data from the crop pest species , a fruit fly native from Northern Australia, we computed GO between "source" populations and a diverse range of locations within invaded areas. This practical application of GO within the context of a biological invasion underscores its potential in providing insights and guiding recommendations for future invasion risk assessment. Overall, our results suggest that GO statistics represent good predictors of the establishment probability and may thus inform invasion risk, although the influence of several factors on prediction performance (e.g., propagule pressure or admixture) will need further investigation.

摘要

预测种群在其原生范围之外建立和扩散的风险是进化生物学中的一项重大挑战。最近已经开发出各种方法,通过所谓的基因组偏移(GO)统计,利用基因组数据来估计种群对新环境的(不)适应性。这些方法在研究入侵物种方面特别有前景,但在这种情况下仍然很少被使用。在这里,我们使用计算机模拟和实证数据评估了GO与种群在新环境中建立的概率之间的关系。首先,我们设计了入侵模拟,以评估在几种条件下两种GO计算方法(几何GO和梯度森林)预测建立概率的能力。此外,我们旨在评估绝对几何GO值的可解释性,理论上它代表了来自不同环境的种群之间的适应性遗传距离。其次,利用来自澳大利亚北部本土的作物害虫物种果蝇的公共实证数据,我们计算了“源”种群与入侵区域内不同地点之间的GO。GO在生物入侵背景下的这种实际应用突出了其在为未来入侵风险评估提供见解和指导建议方面的潜力。总体而言,我们的结果表明,GO统计是建立概率的良好预测指标,因此可能为入侵风险提供信息,尽管几个因素对预测性能的影响(例如繁殖体压力或混合)需要进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3150/11178484/80891b3ae939/EVA-17-e13709-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验