Suppr超能文献

见树木更见森林:评估梯度森林的遗传偏移预测

Seeing the forest for the trees: Assessing genetic offset predictions from gradient forest.

作者信息

Láruson Áki Jarl, Fitzpatrick Matthew C, Keller Stephen R, Haller Benjamin C, Lotterhos Katie E

机构信息

Department of Natural Resources Cornell University Ithaca New York USA.

Appalachian Laboratory University of Maryland Center for Environmental Science Frostburg Maryland USA.

出版信息

Evol Appl. 2022 Feb 25;15(3):403-416. doi: 10.1111/eva.13354. eCollection 2022 Mar.

Abstract

Gradient Forest (GF) is a machine learning algorithm designed to analyze spatial patterns of biodiversity as a function of environmental gradients. An offset measure between the GF-predicted environmental association of adapted alleles and a new environment (GF Offset) is increasingly being used to predict the loss of environmentally adapted alleles under rapid environmental change, but remains mostly untested for this purpose. Here, we explore the robustness of GF Offset to assumption violations, and its relationship to measures of fitness, using SLiM simulations with explicit genome architecture and a spatial metapopulation. We evaluate measures of GF Offset in: (1) a neutral model with no environmental adaptation; (2) a monogenic "population genetic" model with a single environmentally adapted locus; and (3) a polygenic "quantitative genetic" model with two adaptive traits, each adapting to a different environment. We found GF Offset to be broadly correlated with fitness offsets under both single locus and polygenic architectures. However, neutral demography, genomic architecture, and the nature of the adaptive environment can all confound relationships between GF Offset and fitness. GF Offset is a promising tool, but it is important to understand its limitations and underlying assumptions, especially when used in the context of predicting maladaptation.

摘要

梯度森林(GF)是一种机器学习算法,旨在分析生物多样性的空间格局与环境梯度之间的函数关系。GF预测的适应等位基因的环境关联与新环境之间的偏移量测量值(GF偏移量)越来越多地被用于预测快速环境变化下环境适应等位基因的损失,但在这方面大多仍未经过测试。在这里,我们使用具有明确基因组结构和空间集合种群的SLiM模拟,探讨了GF偏移量对假设违背的稳健性及其与适合度测量值的关系。我们在以下情况中评估GF偏移量的测量值:(1)无环境适应的中性模型;(2)具有单个环境适应位点的单基因“群体遗传”模型;(3)具有两个适应性状、每个性状适应不同环境的多基因“数量遗传”模型。我们发现,在单基因座和多基因结构下,GF偏移量与适合度偏移量大致相关。然而,中性种群统计学、基因组结构和适应环境的性质都会混淆GF偏移量与适合度之间的关系。GF偏移量是一个很有前景的工具,但了解其局限性和潜在假设非常重要,尤其是在用于预测适应不良的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ccc/8965365/b8395c1875be/EVA-15-403-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验