Huang Haiyi, Peng Jiawei, Zhang Yulin, Gu Feng Long, Lan Zhenggang, Xu Chao
MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China.
Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China.
J Chem Phys. 2024 Jun 21;160(23). doi: 10.1063/5.0215036.
Understanding the nonadiabatic dynamics of complex systems is a challenging task in computational photochemistry. Herein, we present an efficient and user-friendly quantum mechanics/molecular mechanics (QM/MM) interface to run on-the-fly nonadiabatic dynamics. Currently, this interface consists of an independent set of codes designed for general-purpose use. Herein, we demonstrate the ability and feasibility of the QM/MM interface by integrating it with our long-term developed JADE package. Tailored to handle nonadiabatic processes in various complex systems, especially condensed phases and protein environments, we delve into the theories, implementations, and applications of on-the-fly QM/MM nonadiabatic dynamics. The QM/MM approach is established within the framework of the additive QM/MM scheme, employing electrostatic embedding, link-atom inclusion, and charge-redistribution schemes to treat the QM/MM boundary. Trajectory surface-hopping dynamics are facilitated using the fewest switches algorithm, encompassing classical and quantum treatments for nuclear and electronic motions, respectively. Finally, we report simulations of nonadiabatic dynamics for two typical systems: azomethane in water and the retinal chromophore PSB3 in a protein environment. Our results not only illustrate the power of the QM/MM program but also reveal the important roles of environmental factors in nonadiabatic processes.
理解复杂系统的非绝热动力学是计算光化学中的一项具有挑战性的任务。在此,我们展示了一个高效且用户友好的量子力学/分子力学(QM/MM)接口,用于实时运行非绝热动力学。目前,该接口由一组独立的、为通用目的设计的代码组成。在此,我们通过将QM/MM接口与我们长期开发的JADE软件包集成,展示了其能力和可行性。为处理各种复杂系统中的非绝热过程而量身定制,特别是凝聚相和蛋白质环境,我们深入研究了实时QM/MM非绝热动力学的理论、实现和应用。QM/MM方法是在加性QM/MM方案的框架内建立的,采用静电嵌入、连接原子包含和电荷重新分布方案来处理QM/MM边界。使用最少开关算法促进轨迹表面跳跃动力学,分别对核运动和电子运动进行经典和量子处理。最后,我们报告了两个典型系统的非绝热动力学模拟:水中的偶氮甲烷和蛋白质环境中的视网膜发色团PSB3。我们的结果不仅说明了QM/MM程序的强大功能,还揭示了环境因素在非绝热过程中的重要作用。