Surgical and Interventional Engineering, School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK.
AIBE, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
Int J Comput Assist Radiol Surg. 2024 Aug;19(8):1569-1578. doi: 10.1007/s11548-024-03208-w. Epub 2024 Jun 17.
Autonomous navigation of catheters and guidewires can enhance endovascular surgery safety and efficacy, reducing procedure times and operator radiation exposure. Integrating tele-operated robotics could widen access to time-sensitive emergency procedures like mechanical thrombectomy (MT). Reinforcement learning (RL) shows potential in endovascular navigation, yet its application encounters challenges without a reward signal. This study explores the viability of autonomous guidewire navigation in MT vasculature using inverse reinforcement learning (IRL) to leverage expert demonstrations.
Employing the Simulation Open Framework Architecture (SOFA), this study established a simulation-based training and evaluation environment for MT navigation. We used IRL to infer reward functions from expert behaviour when navigating a guidewire and catheter. We utilized the soft actor-critic algorithm to train models with various reward functions and compared their performance in silico.
We demonstrated feasibility of navigation using IRL. When evaluating single- versus dual-device (i.e. guidewire versus catheter and guidewire) tracking, both methods achieved high success rates of 95% and 96%, respectively. Dual tracking, however, utilized both devices mimicking an expert. A success rate of 100% and procedure time of 22.6 s were obtained when training with a reward function obtained through 'reward shaping'. This outperformed a dense reward function (96%, 24.9 s) and an IRL-derived reward function (48%, 59.2 s).
We have contributed to the advancement of autonomous endovascular intervention navigation, particularly MT, by effectively employing IRL based on demonstrator expertise. The results underscore the potential of using reward shaping to efficiently train models, offering a promising avenue for enhancing the accessibility and precision of MT procedures. We envisage that future research can extend our methodology to diverse anatomical structures to enhance generalizability.
导管和导丝的自主导航可以提高血管内手术的安全性和效果,减少手术时间和操作人员的辐射暴露。远程操作机器人的集成可以扩大机械血栓切除术 (MT) 等时间敏感的急诊手术的应用范围。强化学习 (RL) 在血管内导航中显示出潜力,但由于没有奖励信号,其应用面临挑战。本研究通过使用逆强化学习 (IRL) 来利用专家演示来探索在 MT 脉管系统中进行自主导丝导航的可行性。
本研究使用 Simulation Open Framework Architecture (SOFA) 建立了一个基于模拟的 MT 导航培训和评估环境。我们使用 IRL 从导航导丝和导管时的专家行为中推断奖励函数。我们使用软动作-评论家算法来训练具有不同奖励函数的模型,并在模拟中比较它们的性能。
我们证明了使用 IRL 进行导航的可行性。在评估单设备(即导丝)与双设备(即导丝和导管)跟踪时,两种方法的成功率均高达 95% 和 96%。然而,双跟踪使用了两种设备,模仿了专家的操作。当使用通过“奖励塑造”获得的奖励函数进行训练时,获得了 100%的成功率和 22.6 秒的手术时间。这优于密集奖励函数 (96%,24.9 秒) 和 IRL 衍生的奖励函数 (48%,59.2 秒)。
我们通过有效地利用基于演示专家的 IRL,为自主血管内干预导航,特别是 MT 的发展做出了贡献。结果强调了使用奖励塑造来有效地训练模型的潜力,为提高 MT 手术的可及性和精度提供了有前途的途径。我们设想,未来的研究可以将我们的方法扩展到不同的解剖结构,以提高通用性。