Suppr超能文献

基于学习的自主血管导丝导航,无需在猪肝脏的静脉系统中进行人工演示。

Learning-based autonomous vascular guidewire navigation without human demonstration in the venous system of a porcine liver.

机构信息

Fraunhofer IPA, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.

Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology, Engler-Bunte-Ring 8, 76131, Karlsruhe, Germany.

出版信息

Int J Comput Assist Radiol Surg. 2022 Nov;17(11):2033-2040. doi: 10.1007/s11548-022-02646-8. Epub 2022 May 23.

Abstract

PURPOSE

The navigation of endovascular guidewires is a dexterous task where physicians and patients can benefit from automation. Machine learning-based controllers are promising to help master this task. However, human-generated training data are scarce and resource-intensive to generate. We investigate if a neural network-based controller trained without human-generated data can learn human-like behaviors.

METHODS

We trained and evaluated a neural network-based controller via deep reinforcement learning in a finite element simulation to navigate the venous system of a porcine liver without human-generated data. The behavior is compared to manual expert navigation, and real-world transferability is evaluated.

RESULTS

The controller achieves a success rate of 100% in simulation. The controller applies a wiggling behavior, where the guidewire tip is continuously rotated alternately clockwise and counterclockwise like the human expert applies. In the ex vivo porcine liver, the success rate drops to 30%, because either the wrong branch is probed, or the guidewire becomes entangled.

CONCLUSION

In this work, we prove that a learning-based controller is capable of learning human-like guidewire navigation behavior without human-generated data, therefore, mitigating the requirement to produce resource-intensive human-generated training data. Limitations are the restriction to one vessel geometry, the neglected safeness of navigation, and the reduced transferability to the real world.

摘要

目的

血管内导丝导航是一项需要技巧的任务,医生和患者都可以从自动化中受益。基于机器学习的控制器有望帮助掌握这项任务。然而,人类生成的训练数据稀缺且生成资源密集。我们研究了未经人类生成数据训练的基于神经网络的控制器是否可以学习类似人类的行为。

方法

我们通过深度强化学习在有限元模拟中训练和评估了一种基于神经网络的控制器,以在没有人类生成数据的情况下导航猪肝脏的静脉系统。将该行为与手动专家导航进行比较,并评估实际的可转移性。

结果

该控制器在模拟中实现了 100%的成功率。控制器采用了一种扭动行为,导丝尖端像人类专家一样连续地顺时针和逆时针交替旋转。在离体猪肝中,成功率下降到 30%,因为要么探测到了错误的分支,要么导丝缠结了。

结论

在这项工作中,我们证明了基于学习的控制器无需人类生成的数据即可学习类似人类的导丝导航行为,从而减轻了生成资源密集型人类生成训练数据的需求。限制因素是限于一种血管几何形状、导航的安全性被忽略以及对现实世界的可转移性降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a546/9515141/01dd94016e04/11548_2022_2646_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验