Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland.
Adv Healthc Mater. 2024 Sep;13(23):e2400711. doi: 10.1002/adhm.202400711. Epub 2024 Jun 25.
Translating medical microrobots into clinics requires tracking, localization, and performing assigned medical tasks at target locations, which can only happen when appropriate design, actuation mechanisms, and medical imaging systems are integrated into a single microrobot. Despite this, these parameters are not fully considered when designing macrophage-based microrobots. This study presents living macrophage-based microrobots that combine macrophages with magnetic Janus particles coated with FePt nanofilm for magnetic steering and medical imaging and bacterial lipopolysaccharides for stimulating macrophages in a tumor-killing state. The macrophage-based microrobots combine wireless magnetic actuation, tracking with medical imaging techniques, and antitumor abilities. These microrobots are imaged under magnetic resonance imaging and optoacoustic imaging in soft-tissue-mimicking phantoms and ex vivo conditions. Magnetic actuation and real-time imaging of microrobots are demonstrated under static and physiologically relevant flow conditions using optoacoustic imaging. Further, macrophage-based microrobots are magnetically steered toward urinary bladder tumor spheroids and imaged with a handheld optoacoustic device, where the microrobots significantly reduce the viability of tumor spheroids. The proposed approach demonstrates the proof-of-concept feasibility of integrating macrophage-based microrobots into clinic imaging modalities for cancer targeting and intervention, and can also be implemented for various other medical applications.
将医学微机器人转化为临床应用需要在目标位置进行跟踪、定位和执行指定的医疗任务,这只有在将适当的设计、驱动机制和医学成像系统集成到单个微机器人中时才能实现。尽管如此,在设计基于巨噬细胞的微机器人时,这些参数并没有被充分考虑。本研究提出了一种基于活巨噬细胞的微机器人,它将巨噬细胞与涂有 FePt 纳米薄膜的磁性 Janus 颗粒结合在一起,用于磁性转向和医学成像,以及细菌脂多糖用于刺激巨噬细胞进入杀伤肿瘤状态。基于巨噬细胞的微机器人结合了无线磁驱动、医学成像技术跟踪和抗肿瘤能力。这些微机器人在软组织模拟体和离体条件下进行磁共振成像和光声成像。在静态和生理相关的流动条件下,使用光声成像演示了微机器人的磁驱动和实时成像。此外,基于巨噬细胞的微机器人被磁性引导到膀胱肿瘤球体,并使用手持式光声设备进行成像,其中微机器人显著降低了肿瘤球体的活力。所提出的方法证明了将基于巨噬细胞的微机器人集成到临床成像模式中用于癌症靶向和干预的概念验证可行性,并且还可以用于各种其他医学应用。