Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland.
Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, 8093 Zurich, Switzerland.
Sci Adv. 2022 May 13;8(19):eabm9132. doi: 10.1126/sciadv.abm9132. Epub 2022 May 11.
Mobile microrobots hold remarkable potential to revolutionize health care by enabling unprecedented active medical interventions and theranostics, such as active cargo delivery and microsurgical manipulations in hard-to-reach body sites. High-resolution imaging and control of cell-sized microrobots in the in vivo vascular system remains an unsolved challenge toward their clinical use. To overcome this limitation, we propose noninvasive real-time detection and tracking of circulating microrobots using optoacoustic imaging. We devised cell-sized nickel-based spherical Janus magnetic microrobots whose near-infrared optoacoustic signature is enhanced via gold conjugation. The 5-, 10-, and 20-μm-diameter microrobots are detected volumetrically both in bloodless ex vivo tissues and under real-life conditions with a strongly light-absorbing blood background. We further demonstrate real-time three-dimensional tracking and magnetic manipulation of the microrobots circulating in murine cerebral vasculature, thus paving the way toward effective and safe operation of cell-sized microrobots in challenging and clinically relevant intravascular environments.
移动微型机器人具有改变医疗保健的巨大潜力,能够实现前所未有的主动医疗干预和治疗诊断,例如在难以到达的身体部位主动输送药物和进行微创手术操作。然而,要将细胞大小的微型机器人在体内血管系统中进行高分辨率成像和控制仍然是一个尚未解决的挑战,限制了其在临床中的应用。为了克服这一限制,我们提出了使用光声成像技术对循环微型机器人进行非侵入式实时检测和跟踪。我们设计了细胞大小的基于镍的球形 Janus 磁性微型机器人,其近红外光声特征通过金结合得到增强。5、10 和 20μm 直径的微型机器人在无血的离体组织中和在具有强烈光吸收背景的真实生活条件下都可以进行体积检测。我们进一步演示了在小鼠脑血管中循环的微型机器人的实时三维跟踪和磁操纵,从而为在具有挑战性和临床相关的血管内环境中有效和安全地操作细胞大小的微型机器人铺平了道路。