Institute of Biomedical Engineering, TU Dresden, Fetscherstr. 29, Dresden 01307, Germany.
Center of Clinical Neuroscience, Neurological Clinic, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, Dresden 01307, Germany.
Mult Scler Relat Disord. 2024 Aug;88:105721. doi: 10.1016/j.msard.2024.105721. Epub 2024 Jun 10.
Multiple sclerosis (MS) is the most common chronic inflammatory disease of the central nervous system. The progressive impairment of gait is one of the most important pathognomic symptoms which are associated with falls and fear of falling (FOF) in people with MS (pwMS). 60 % of pwMS show a FOF, which leads to restrictions in mobility as well as physical activity and reduces the quality of life in general. Therefore, early detection of FOF is crucial because it enables early implementation of rehabilitation strategies as well as clinical decision-making to reduce progression. Qualitative and quantitative evaluation of gait pattern is an essential aspect of disease assessment and can provide valuable insights for personalized treatment decisions in pwMS. Our objective was to identify the most appropriate clinical gait analysis methods to identify FOF in pwMS and to detect the optimal machine learning (ML) algorithms to predict FOF using the complex multidimensional data from gait analysis.
Data of 1240 pwMS was recorded at the MS Centre of the University Hospital Dresden between November 2020 and September 2021. Patients performed a multidimensional gait analysis with pressure and motion sensors, as well as patient-reported outcomes (PROs), according to a standardized protocol. A feature selection ensemble (FS-Ensemble) was developed to improve the classification performance. The FS-Ensemble consisted of four filtering methods: Chi-square test, information gain, minimum redundancy maximum relevance and ReliefF. Gaussian Naive Bayes, Decision Tree, k-Nearest Neighbor, and Support Vector Machines (SVM) were used to identify FOF.
The descriptive analysis showed that 37 % of the 1240 pwMS had a FOF (n = 458; age: 51 ± 16 years, 76 % women, median EDSS: 4.0). The FS-Ensemble improved classification performance in most cases. The SVM showed the best performance of the four classification models in detecting FOF. The PROs showed the best F1 scores (Early Mobility Impairment Questionnaire F1 = 0.81 ± 0.00 and 12-item Multiple Sclerosis Scale F1 = 0.80 ± 0.00).
FOF is an important psychological risk factor associated with an increased risk of falls. To integrate a functional early warning system for fall detection into MS management and progression monitoring, it is necessary to detect the relevant gait parameters as well as assessment methods. In this context, ML strategies allow the integration of gait parameters from clinical routine to support the initiation of early rehabilitation measures and adaptation of course-modifying therapeutics. The results of this study confirm that patients' self-assessments play an important role in disease management.
多发性硬化症(MS)是中枢神经系统最常见的慢性炎症性疾病。步态进行性受损是 MS 患者(pwMS)最重要的特征症状之一,与跌倒和跌倒恐惧(FOF)有关。60%的 pwMS 存在 FOF,这导致其活动受限以及身体活动减少,并降低整体生活质量。因此,早期发现 FOF 至关重要,因为它可以早期实施康复策略以及临床决策,以减缓疾病进展。步态模式的定性和定量评估是疾病评估的重要方面,可为 pwMS 的个性化治疗决策提供有价值的见解。我们的目标是确定最适合 pwMS 中 FOF 识别的临床步态分析方法,并使用步态分析的复杂多维数据来检测最佳的机器学习(ML)算法来预测 FOF。
2020 年 11 月至 2021 年 9 月,在德累斯顿大学医院的 MS 中心记录了 1240 名 pwMS 的数据。患者根据标准化方案进行多维步态分析,包括压力和运动传感器以及患者报告的结果(PROs)。开发了特征选择集成(FS-Ensemble)来提高分类性能。FS-Ensemble 由四种过滤方法组成:卡方检验、信息增益、最小冗余最大相关性和 ReliefF。使用高斯朴素贝叶斯、决策树、k-最近邻和支持向量机(SVM)来识别 FOF。
描述性分析表明,1240 名 pwMS 中有 37%(n = 458;年龄:51 ± 16 岁,76%为女性,中位数 EDSS:4.0)存在 FOF。在大多数情况下,FS-Ensemble 提高了分类性能。SVM 在检测 FOF 方面显示出四种分类模型中最好的性能。PROs 显示出最佳的 F1 分数(早期移动障碍问卷 F1 = 0.81 ± 0.00 和 12 项多发性硬化症量表 F1 = 0.80 ± 0.00)。
FOF 是与跌倒风险增加相关的重要心理危险因素。为了将跌倒检测的功能性早期预警系统整合到 MS 管理和疾病进展监测中,有必要检测相关的步态参数和评估方法。在这种情况下,ML 策略允许将临床常规中的步态参数集成在一起,以支持早期康复措施的启动,并调整课程修正治疗。本研究结果证实,患者的自我评估在疾病管理中起着重要作用。