Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden.
Acta Orthop. 2024 Jun 18;95:340-347. doi: 10.2340/17453674.2024.40949.
Artificial intelligence (AI) has the potential to aid in the accurate diagnosis of hip fractures and reduce the workload of clinicians. We primarily aimed to develop and validate a convolutional neural network (CNN) for the automated classification of hip fractures based on the 2018 AO-OTA classification system. The secondary aim was to incorporate the model's assessment of additional radiographic findings that often accompany such injuries.
6,361 plain radiographs of the hip taken between 2002 and 2016 at Danderyd University Hospital were used to train the CNN. A separate set of 343 radiographs representing 324 unique patients was used to test the performance of the network. Performance was evaluated using area under the curve (AUC), sensitivity, specificity, and Youden's index.
The CNN demonstrated high performance in identifying and classifying hip fracture, with AUCs ranging from 0.76 to 0.99 for different fracture categories. The AUC for hip fractures ranged from 0.86 to 0.99, for distal femur fractures from 0.76 to 0.99, and for pelvic fractures from 0.91 to 0.94. For 29 of 39 fracture categories, the AUC was ≥ 0.95.
We found that AI has the potential for accurate and automated classification of hip fractures based on the AO-OTA classification system. Further training and modification of the CNN may enable its use in clinical settings.
人工智能(AI)有可能辅助准确诊断髋部骨折并减轻临床医生的工作量。我们的主要目标是开发和验证一种基于 2018 年 AO-OTA 分类系统的卷积神经网络(CNN),以自动对髋部骨折进行分类。次要目标是纳入模型对伴随此类损伤的其他影像学发现的评估。
使用 2002 年至 2016 年期间在 Danderyd 大学医院拍摄的 6361 张髋关节平片对 CNN 进行训练。另外一组 343 张代表 324 名独特患者的 X 光片用于测试网络的性能。使用曲线下面积(AUC)、敏感性、特异性和 Youden 指数评估性能。
CNN 在识别和分类髋部骨折方面表现出很高的性能,不同骨折类别的 AUC 范围为 0.76 至 0.99。髋部骨折的 AUC 范围为 0.86 至 0.99,股骨远端骨折的 AUC 范围为 0.76 至 0.99,骨盆骨折的 AUC 范围为 0.91 至 0.94。对于 39 个骨折类别中的 29 个,AUC 均≥0.95。
我们发现 AI 有可能基于 AO-OTA 分类系统对髋部骨折进行准确和自动分类。进一步的训练和修改 CNN 可能使其能够在临床环境中使用。